멀티 스펙트럴 이미지 센서를 이용한 감자의 생육정보 예측
The objective of this research was to establish the estimation method of growth information on potato using Multi-Spectral Image Sensor (MSIS) and Global Positioning System (GPS). And growth estimation map for determining a prescription map over the entire field was generated. To determine the growt...
Gespeichert in:
Veröffentlicht in: | Journal of Biosystems Engineering, 36(3) 2011, 36(3), 146, pp.180-186 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 3 |
container_start_page | 180 |
container_title | Journal of Biosystems Engineering, 36(3) |
container_volume | 36 |
creator | 강태환 T. H. Kang 野口伸 N. Noguchi |
description | The objective of this research was to establish the estimation method of growth information on potato using Multi-Spectral Image Sensor (MSIS) and Global Positioning System (GPS). And growth estimation map for determining a prescription map over the entire field was generated. To determine the growth model, 10 ground-truth points of areas of 4 m2 each were selected and investigated. The growth information included stem number, crop height and SPAD value. In addition, images information involving the ground-truth points were also taken by an unmanned helicopter, and reflectance value of Green, Red, and NIR bands were calculated with image processing. Then, growth status of potato was modeled by multi-regression analysis using these reflectance value of Green, Red, and NIR. As a result, potato growth information could be detected by analyzing Green, Red, and NIR images. Stem number, crop height and SPAD value could be estimated with R2 values of 0.600, 0.657 and 0.747 respectively. The generated GIS map would describe variability of the potato growth in a whole field. |
format | Article |
fullrecord | <record><control><sourceid>kiss_nrf_k</sourceid><recordid>TN_cdi_kiss_primary_2936432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>2936432</kiss_id><sourcerecordid>2936432</sourcerecordid><originalsourceid>FETCH-LOGICAL-k838-d77fd0d58e3e627d4c9b9472ddf2d88db6cd81c0e2fd1365c4b48eead3fd9e033</originalsourceid><addsrcrecordid>eNo9jj1Lw0AAhg9RsNT-Apcsgksg95G7y1iKH9VCQbofSe4iIbWVxMWtYAepIF0KVVK1oEgnC3bo0F9kLv_BaMXpgZfnfXk3QAkhTEzIKdoEJcgwNyGidBtUkiT0LBtjRhknJdDMZr38bm7owWt-_5APltnzwtCTRfax1O89Q_dXup9mb6ufTD_O8lFqfM2H-mmoJ2ND30x0OtUvo-yzKI1v9XK6A7YCt52oyh_LoHV40Kodm43mUb1WbZgRL75IxgJpSZsrrChikviO5xCGpAyQ5Fx61Jcc-pZCgYSY2j7xCFfKlTiQjrIwLoP99WwnDkTkh6Lrhr8874ooFtWzVl1Qm3LEC3VvrUZhchWKjkza4qR62kQWhMiGNoaEOtwqvN1_LxGXcXjhxtcCOZgSjPA39It6Ig</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>멀티 스펙트럴 이미지 센서를 이용한 감자의 생육정보 예측</title><source>KoreaScience</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>강태환 ; T. H. Kang ; 野口伸 ; N. Noguchi</creator><creatorcontrib>강태환 ; T. H. Kang ; 野口伸 ; N. Noguchi</creatorcontrib><description>The objective of this research was to establish the estimation method of growth information on potato using Multi-Spectral Image Sensor (MSIS) and Global Positioning System (GPS). And growth estimation map for determining a prescription map over the entire field was generated. To determine the growth model, 10 ground-truth points of areas of 4 m2 each were selected and investigated. The growth information included stem number, crop height and SPAD value. In addition, images information involving the ground-truth points were also taken by an unmanned helicopter, and reflectance value of Green, Red, and NIR bands were calculated with image processing. Then, growth status of potato was modeled by multi-regression analysis using these reflectance value of Green, Red, and NIR. As a result, potato growth information could be detected by analyzing Green, Red, and NIR images. Stem number, crop height and SPAD value could be estimated with R2 values of 0.600, 0.657 and 0.747 respectively. The generated GIS map would describe variability of the potato growth in a whole field.</description><identifier>ISSN: 1738-1266</identifier><identifier>EISSN: 2234-1862</identifier><language>kor</language><publisher>한국농업기계학회</publisher><subject>Crop height ; GIS ; GPS ; Multi-spectral image sensor ; Potato ; SPAD ; Stem number ; 농학</subject><ispartof>Journal of Biosystems Engineering, 2011, 36(3), 146, pp.180-186</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001571224$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>강태환</creatorcontrib><creatorcontrib>T. H. Kang</creatorcontrib><creatorcontrib>野口伸</creatorcontrib><creatorcontrib>N. Noguchi</creatorcontrib><title>멀티 스펙트럴 이미지 센서를 이용한 감자의 생육정보 예측</title><title>Journal of Biosystems Engineering, 36(3)</title><addtitle>Journal of biocystems Engineering</addtitle><description>The objective of this research was to establish the estimation method of growth information on potato using Multi-Spectral Image Sensor (MSIS) and Global Positioning System (GPS). And growth estimation map for determining a prescription map over the entire field was generated. To determine the growth model, 10 ground-truth points of areas of 4 m2 each were selected and investigated. The growth information included stem number, crop height and SPAD value. In addition, images information involving the ground-truth points were also taken by an unmanned helicopter, and reflectance value of Green, Red, and NIR bands were calculated with image processing. Then, growth status of potato was modeled by multi-regression analysis using these reflectance value of Green, Red, and NIR. As a result, potato growth information could be detected by analyzing Green, Red, and NIR images. Stem number, crop height and SPAD value could be estimated with R2 values of 0.600, 0.657 and 0.747 respectively. The generated GIS map would describe variability of the potato growth in a whole field.</description><subject>Crop height</subject><subject>GIS</subject><subject>GPS</subject><subject>Multi-spectral image sensor</subject><subject>Potato</subject><subject>SPAD</subject><subject>Stem number</subject><subject>농학</subject><issn>1738-1266</issn><issn>2234-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNo9jj1Lw0AAhg9RsNT-Apcsgksg95G7y1iKH9VCQbofSe4iIbWVxMWtYAepIF0KVVK1oEgnC3bo0F9kLv_BaMXpgZfnfXk3QAkhTEzIKdoEJcgwNyGidBtUkiT0LBtjRhknJdDMZr38bm7owWt-_5APltnzwtCTRfax1O89Q_dXup9mb6ufTD_O8lFqfM2H-mmoJ2ND30x0OtUvo-yzKI1v9XK6A7YCt52oyh_LoHV40Kodm43mUb1WbZgRL75IxgJpSZsrrChikviO5xCGpAyQ5Fx61Jcc-pZCgYSY2j7xCFfKlTiQjrIwLoP99WwnDkTkh6Lrhr8874ooFtWzVl1Qm3LEC3VvrUZhchWKjkza4qR62kQWhMiGNoaEOtwqvN1_LxGXcXjhxtcCOZgSjPA39It6Ig</recordid><startdate>20110625</startdate><enddate>20110625</enddate><creator>강태환</creator><creator>T. H. Kang</creator><creator>野口伸</creator><creator>N. Noguchi</creator><general>한국농업기계학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope><scope>ACYCR</scope></search><sort><creationdate>20110625</creationdate><title>멀티 스펙트럴 이미지 센서를 이용한 감자의 생육정보 예측</title><author>강태환 ; T. H. Kang ; 野口伸 ; N. Noguchi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k838-d77fd0d58e3e627d4c9b9472ddf2d88db6cd81c0e2fd1365c4b48eead3fd9e033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2011</creationdate><topic>Crop height</topic><topic>GIS</topic><topic>GPS</topic><topic>Multi-spectral image sensor</topic><topic>Potato</topic><topic>SPAD</topic><topic>Stem number</topic><topic>농학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>강태환</creatorcontrib><creatorcontrib>T. H. Kang</creatorcontrib><creatorcontrib>野口伸</creatorcontrib><creatorcontrib>N. Noguchi</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><collection>Korean Citation Index</collection><jtitle>Journal of Biosystems Engineering, 36(3)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>강태환</au><au>T. H. Kang</au><au>野口伸</au><au>N. Noguchi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>멀티 스펙트럴 이미지 센서를 이용한 감자의 생육정보 예측</atitle><jtitle>Journal of Biosystems Engineering, 36(3)</jtitle><addtitle>Journal of biocystems Engineering</addtitle><date>2011-06-25</date><risdate>2011</risdate><volume>36</volume><issue>3</issue><spage>180</spage><epage>186</epage><pages>180-186</pages><issn>1738-1266</issn><eissn>2234-1862</eissn><abstract>The objective of this research was to establish the estimation method of growth information on potato using Multi-Spectral Image Sensor (MSIS) and Global Positioning System (GPS). And growth estimation map for determining a prescription map over the entire field was generated. To determine the growth model, 10 ground-truth points of areas of 4 m2 each were selected and investigated. The growth information included stem number, crop height and SPAD value. In addition, images information involving the ground-truth points were also taken by an unmanned helicopter, and reflectance value of Green, Red, and NIR bands were calculated with image processing. Then, growth status of potato was modeled by multi-regression analysis using these reflectance value of Green, Red, and NIR. As a result, potato growth information could be detected by analyzing Green, Red, and NIR images. Stem number, crop height and SPAD value could be estimated with R2 values of 0.600, 0.657 and 0.747 respectively. The generated GIS map would describe variability of the potato growth in a whole field.</abstract><pub>한국농업기계학회</pub><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-1266 |
ispartof | Journal of Biosystems Engineering, 2011, 36(3), 146, pp.180-186 |
issn | 1738-1266 2234-1862 |
language | kor |
recordid | cdi_kiss_primary_2936432 |
source | KoreaScience; EZB-FREE-00999 freely available EZB journals |
subjects | Crop height GIS GPS Multi-spectral image sensor Potato SPAD Stem number 농학 |
title | 멀티 스펙트럴 이미지 센서를 이용한 감자의 생육정보 예측 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%EB%A9%80%ED%8B%B0%20%EC%8A%A4%ED%8E%99%ED%8A%B8%EB%9F%B4%20%EC%9D%B4%EB%AF%B8%EC%A7%80%20%EC%84%BC%EC%84%9C%EB%A5%BC%20%EC%9D%B4%EC%9A%A9%ED%95%9C%20%EA%B0%90%EC%9E%90%EC%9D%98%20%EC%83%9D%EC%9C%A1%EC%A0%95%EB%B3%B4%20%EC%98%88%EC%B8%A1&rft.jtitle=Journal%20of%20Biosystems%20Engineering,%2036(3)&rft.au=%EA%B0%95%ED%83%9C%ED%99%98&rft.date=2011-06-25&rft.volume=36&rft.issue=3&rft.spage=180&rft.epage=186&rft.pages=180-186&rft.issn=1738-1266&rft.eissn=2234-1862&rft_id=info:doi/&rft_dat=%3Ckiss_nrf_k%3E2936432%3C/kiss_nrf_k%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=2936432&rfr_iscdi=true |