A Kinetic Model of Inorganic Phosphorus Mass Balance in Hemodialysis Therapy
Background: There is growing evidence that inorganic phosphorus (iP) accumulation in tissues (dTiP/dt) is a risk factor for cardiac death in hemodialysis therapy (HD). The factors controlling iP mass balance in HD are dietary intake (GiP), removal by binders (JbiP) and removal by dialysis (JdiP). If...
Gespeichert in:
Veröffentlicht in: | Blood purification 2003-01, Vol.21 (1), p.51-57 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Blood purification |
container_volume | 21 |
creator | Gotch, Frank A. Panlilio, Froilan Sergeyeva, Olga Rosales, Laura Folden, Tom Kaysen, George Levin, Nathan W. |
description | Background: There is growing evidence that inorganic phosphorus (iP) accumulation in tissues (dTiP/dt) is a risk factor for cardiac death in hemodialysis therapy (HD). The factors controlling iP mass balance in HD are dietary intake (GiP), removal by binders (JbiP) and removal by dialysis (JdiP). If iP accumulation is to be minimized, it will be necessary to regularly monitor and optimize GiP, JbiP and JdiP in individual patients. We have developed a kinetic model (iPKM) designed to monitor these three parameters of iP mass balance in individual patients and report here preliminary evaluation of the model in 23 HD patients. Methods: GiP was calculated from PCR measured with urea kinetics; JdiP was calculated from the product of dialyzer plasma water clearance (K pwiP ) and time average plasma iP concentration (TACiP) and treatment time (t); a new iP concentration parameter (nTAC iP , the TACiP normalized to predialysis CoiP) was devised and shown to be a highly predictable function of the form nTAC iP = 1 – α(1 – exp[–βK pwiP · t/ViP]), where the coefficients α and β are calculated for each patient from 2 measure values for nTAC iP , K pwiP ·t/ViP early and late in dialysis; we measured 8–10 serial values for nTAC iP , K pwiP · t/ViP over a single dialysis in 23 patients; the expression derived for iP mass balance is ΔTiP = 12(PCR) – [K pwiP (t) (N/7)][CoiP(1 – α(1 – exp[–β(Kt/ViP)]))] – k b ·Nb. Results: Calculated nTAC iP = 1.01(measured nTAC iP ), r = 0.98, n = 213; calculated JdiP = 0.66(measured total dialysate iP) + 358, n = 23, r = 0.88, p < 0.001. Evaluation of 10 daily HD patients (DD) and 13 3 times weekly patients with the model predicted the number of binders required very well and showed that the much higher binder requirement observed in these DD patients was due to much higher NPCR (1.3 vs. 0.96). Conclusion: These results are very encouraging that it may be possible to monitor the individual effects of diet, dialysis and binders in HD and thus optimize these parameters of iP mass balance and reduce phosphate accumulation in tissues. |
doi_str_mv | 10.1159/000067866 |
format | Article |
fullrecord | <record><control><sourceid>proquest_karge</sourceid><recordid>TN_cdi_karger_primary_67866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72997243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-826bc82bbffe83ca5e082f65b248a9ea7817721224fb79a18ad233e0aab4b6e63</originalsourceid><addsrcrecordid>eNpt0LtPHDEQB2DngcJBUlBHQlakRKLY4PejBJQExKFQQL2a3R1zm-ytF_uuuP8ehztBk2ksjT_NjH6EHHH2nXPtT1kpY50xb8iBlNwx5qWXb8mMK8Erb6V-Vz4c09pqqfl7MmNCy0oz4_bJQc5_GOPKaP-B7HOhTSkxI_Mzet2PuOpbehM7HGgM9GqM6QHG0rpdxDwtYlpnegM503MYYGyR9iO9xGXsehg2uc_0boEJps1HshdgyPhp9x6S-58_7i4uq_nvX1cXZ_OqldqtKidM0zrRNCGgky1oZE4EoxuhHHgE67i1gguhQmM9cAedkBIZQKMag0Yekm_buVOKj2vMq3rZ5xaHchzGda6t8N4KJQs82cI2xZwThnpK_RLSpuas_hdq_RJqsce7oetmid2r3GVVwNcdgNzCEFKJos-vTiknDVfFfdm6v5AeML2A89v750311IWCPv8XbW95AkHJjbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72997243</pqid></control><display><type>article</type><title>A Kinetic Model of Inorganic Phosphorus Mass Balance in Hemodialysis Therapy</title><source>Karger Journals</source><source>MEDLINE</source><creator>Gotch, Frank A. ; Panlilio, Froilan ; Sergeyeva, Olga ; Rosales, Laura ; Folden, Tom ; Kaysen, George ; Levin, Nathan W.</creator><creatorcontrib>Gotch, Frank A. ; Panlilio, Froilan ; Sergeyeva, Olga ; Rosales, Laura ; Folden, Tom ; Kaysen, George ; Levin, Nathan W.</creatorcontrib><description>Background: There is growing evidence that inorganic phosphorus (iP) accumulation in tissues (dTiP/dt) is a risk factor for cardiac death in hemodialysis therapy (HD). The factors controlling iP mass balance in HD are dietary intake (GiP), removal by binders (JbiP) and removal by dialysis (JdiP). If iP accumulation is to be minimized, it will be necessary to regularly monitor and optimize GiP, JbiP and JdiP in individual patients. We have developed a kinetic model (iPKM) designed to monitor these three parameters of iP mass balance in individual patients and report here preliminary evaluation of the model in 23 HD patients. Methods: GiP was calculated from PCR measured with urea kinetics; JdiP was calculated from the product of dialyzer plasma water clearance (K pwiP ) and time average plasma iP concentration (TACiP) and treatment time (t); a new iP concentration parameter (nTAC iP , the TACiP normalized to predialysis CoiP) was devised and shown to be a highly predictable function of the form nTAC iP = 1 – α(1 – exp[–βK pwiP · t/ViP]), where the coefficients α and β are calculated for each patient from 2 measure values for nTAC iP , K pwiP ·t/ViP early and late in dialysis; we measured 8–10 serial values for nTAC iP , K pwiP · t/ViP over a single dialysis in 23 patients; the expression derived for iP mass balance is ΔTiP = 12(PCR) – [K pwiP (t) (N/7)][CoiP(1 – α(1 – exp[–β(Kt/ViP)]))] – k b ·Nb. Results: Calculated nTAC iP = 1.01(measured nTAC iP ), r = 0.98, n = 213; calculated JdiP = 0.66(measured total dialysate iP) + 358, n = 23, r = 0.88, p < 0.001. Evaluation of 10 daily HD patients (DD) and 13 3 times weekly patients with the model predicted the number of binders required very well and showed that the much higher binder requirement observed in these DD patients was due to much higher NPCR (1.3 vs. 0.96). Conclusion: These results are very encouraging that it may be possible to monitor the individual effects of diet, dialysis and binders in HD and thus optimize these parameters of iP mass balance and reduce phosphate accumulation in tissues.</description><identifier>ISSN: 0253-5068</identifier><identifier>ISBN: 3805575351</identifier><identifier>ISBN: 9783805575355</identifier><identifier>EISSN: 1421-9735</identifier><identifier>EISBN: 3318009393</identifier><identifier>EISBN: 9783318009392</identifier><identifier>DOI: 10.1159/000067866</identifier><identifier>PMID: 12566662</identifier><identifier>CODEN: BLPUDO</identifier><language>eng</language><publisher>Basel, Switzerland: Karger</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Biological and medical sciences ; Death ; Emergency and intensive care: renal failure. Dialysis management ; Humans ; Intensive care medicine ; Kinetics ; Medical sciences ; Models, Biological ; Models, Theoretical ; Phosphorus - blood ; Phosphorus - metabolism ; Phosphorus, Dietary - blood ; Phosphorus, Dietary - metabolism ; Renal Dialysis - adverse effects ; Renal Dialysis - methods ; Renal Dialysis - standards</subject><ispartof>Blood purification, 2003-01, Vol.21 (1), p.51-57</ispartof><rights>2003 S. Karger AG, Basel</rights><rights>2003 INIST-CNRS</rights><rights>Copyright 2003 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-826bc82bbffe83ca5e082f65b248a9ea7817721224fb79a18ad233e0aab4b6e63</citedby><cites>FETCH-LOGICAL-c358t-826bc82bbffe83ca5e082f65b248a9ea7817721224fb79a18ad233e0aab4b6e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,2423,4010,4036,4037,23909,23910,25118,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14483614$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12566662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gotch, Frank A.</creatorcontrib><creatorcontrib>Panlilio, Froilan</creatorcontrib><creatorcontrib>Sergeyeva, Olga</creatorcontrib><creatorcontrib>Rosales, Laura</creatorcontrib><creatorcontrib>Folden, Tom</creatorcontrib><creatorcontrib>Kaysen, George</creatorcontrib><creatorcontrib>Levin, Nathan W.</creatorcontrib><title>A Kinetic Model of Inorganic Phosphorus Mass Balance in Hemodialysis Therapy</title><title>Blood purification</title><addtitle>Blood Purif</addtitle><description>Background: There is growing evidence that inorganic phosphorus (iP) accumulation in tissues (dTiP/dt) is a risk factor for cardiac death in hemodialysis therapy (HD). The factors controlling iP mass balance in HD are dietary intake (GiP), removal by binders (JbiP) and removal by dialysis (JdiP). If iP accumulation is to be minimized, it will be necessary to regularly monitor and optimize GiP, JbiP and JdiP in individual patients. We have developed a kinetic model (iPKM) designed to monitor these three parameters of iP mass balance in individual patients and report here preliminary evaluation of the model in 23 HD patients. Methods: GiP was calculated from PCR measured with urea kinetics; JdiP was calculated from the product of dialyzer plasma water clearance (K pwiP ) and time average plasma iP concentration (TACiP) and treatment time (t); a new iP concentration parameter (nTAC iP , the TACiP normalized to predialysis CoiP) was devised and shown to be a highly predictable function of the form nTAC iP = 1 – α(1 – exp[–βK pwiP · t/ViP]), where the coefficients α and β are calculated for each patient from 2 measure values for nTAC iP , K pwiP ·t/ViP early and late in dialysis; we measured 8–10 serial values for nTAC iP , K pwiP · t/ViP over a single dialysis in 23 patients; the expression derived for iP mass balance is ΔTiP = 12(PCR) – [K pwiP (t) (N/7)][CoiP(1 – α(1 – exp[–β(Kt/ViP)]))] – k b ·Nb. Results: Calculated nTAC iP = 1.01(measured nTAC iP ), r = 0.98, n = 213; calculated JdiP = 0.66(measured total dialysate iP) + 358, n = 23, r = 0.88, p < 0.001. Evaluation of 10 daily HD patients (DD) and 13 3 times weekly patients with the model predicted the number of binders required very well and showed that the much higher binder requirement observed in these DD patients was due to much higher NPCR (1.3 vs. 0.96). Conclusion: These results are very encouraging that it may be possible to monitor the individual effects of diet, dialysis and binders in HD and thus optimize these parameters of iP mass balance and reduce phosphate accumulation in tissues.</description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Biological and medical sciences</subject><subject>Death</subject><subject>Emergency and intensive care: renal failure. Dialysis management</subject><subject>Humans</subject><subject>Intensive care medicine</subject><subject>Kinetics</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Models, Theoretical</subject><subject>Phosphorus - blood</subject><subject>Phosphorus - metabolism</subject><subject>Phosphorus, Dietary - blood</subject><subject>Phosphorus, Dietary - metabolism</subject><subject>Renal Dialysis - adverse effects</subject><subject>Renal Dialysis - methods</subject><subject>Renal Dialysis - standards</subject><issn>0253-5068</issn><issn>1421-9735</issn><isbn>3805575351</isbn><isbn>9783805575355</isbn><isbn>3318009393</isbn><isbn>9783318009392</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0LtPHDEQB2DngcJBUlBHQlakRKLY4PejBJQExKFQQL2a3R1zm-ytF_uuuP8ehztBk2ksjT_NjH6EHHH2nXPtT1kpY50xb8iBlNwx5qWXb8mMK8Erb6V-Vz4c09pqqfl7MmNCy0oz4_bJQc5_GOPKaP-B7HOhTSkxI_Mzet2PuOpbehM7HGgM9GqM6QHG0rpdxDwtYlpnegM503MYYGyR9iO9xGXsehg2uc_0boEJps1HshdgyPhp9x6S-58_7i4uq_nvX1cXZ_OqldqtKidM0zrRNCGgky1oZE4EoxuhHHgE67i1gguhQmM9cAedkBIZQKMag0Yekm_buVOKj2vMq3rZ5xaHchzGda6t8N4KJQs82cI2xZwThnpK_RLSpuas_hdq_RJqsce7oetmid2r3GVVwNcdgNzCEFKJos-vTiknDVfFfdm6v5AeML2A89v750311IWCPv8XbW95AkHJjbU</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Gotch, Frank A.</creator><creator>Panlilio, Froilan</creator><creator>Sergeyeva, Olga</creator><creator>Rosales, Laura</creator><creator>Folden, Tom</creator><creator>Kaysen, George</creator><creator>Levin, Nathan W.</creator><general>Karger</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200301</creationdate><title>A Kinetic Model of Inorganic Phosphorus Mass Balance in Hemodialysis Therapy</title><author>Gotch, Frank A. ; Panlilio, Froilan ; Sergeyeva, Olga ; Rosales, Laura ; Folden, Tom ; Kaysen, George ; Levin, Nathan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-826bc82bbffe83ca5e082f65b248a9ea7817721224fb79a18ad233e0aab4b6e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Biological and medical sciences</topic><topic>Death</topic><topic>Emergency and intensive care: renal failure. Dialysis management</topic><topic>Humans</topic><topic>Intensive care medicine</topic><topic>Kinetics</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Models, Theoretical</topic><topic>Phosphorus - blood</topic><topic>Phosphorus - metabolism</topic><topic>Phosphorus, Dietary - blood</topic><topic>Phosphorus, Dietary - metabolism</topic><topic>Renal Dialysis - adverse effects</topic><topic>Renal Dialysis - methods</topic><topic>Renal Dialysis - standards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gotch, Frank A.</creatorcontrib><creatorcontrib>Panlilio, Froilan</creatorcontrib><creatorcontrib>Sergeyeva, Olga</creatorcontrib><creatorcontrib>Rosales, Laura</creatorcontrib><creatorcontrib>Folden, Tom</creatorcontrib><creatorcontrib>Kaysen, George</creatorcontrib><creatorcontrib>Levin, Nathan W.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Blood purification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gotch, Frank A.</au><au>Panlilio, Froilan</au><au>Sergeyeva, Olga</au><au>Rosales, Laura</au><au>Folden, Tom</au><au>Kaysen, George</au><au>Levin, Nathan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kinetic Model of Inorganic Phosphorus Mass Balance in Hemodialysis Therapy</atitle><jtitle>Blood purification</jtitle><addtitle>Blood Purif</addtitle><date>2003-01</date><risdate>2003</risdate><volume>21</volume><issue>1</issue><spage>51</spage><epage>57</epage><pages>51-57</pages><issn>0253-5068</issn><eissn>1421-9735</eissn><isbn>3805575351</isbn><isbn>9783805575355</isbn><eisbn>3318009393</eisbn><eisbn>9783318009392</eisbn><coden>BLPUDO</coden><abstract>Background: There is growing evidence that inorganic phosphorus (iP) accumulation in tissues (dTiP/dt) is a risk factor for cardiac death in hemodialysis therapy (HD). The factors controlling iP mass balance in HD are dietary intake (GiP), removal by binders (JbiP) and removal by dialysis (JdiP). If iP accumulation is to be minimized, it will be necessary to regularly monitor and optimize GiP, JbiP and JdiP in individual patients. We have developed a kinetic model (iPKM) designed to monitor these three parameters of iP mass balance in individual patients and report here preliminary evaluation of the model in 23 HD patients. Methods: GiP was calculated from PCR measured with urea kinetics; JdiP was calculated from the product of dialyzer plasma water clearance (K pwiP ) and time average plasma iP concentration (TACiP) and treatment time (t); a new iP concentration parameter (nTAC iP , the TACiP normalized to predialysis CoiP) was devised and shown to be a highly predictable function of the form nTAC iP = 1 – α(1 – exp[–βK pwiP · t/ViP]), where the coefficients α and β are calculated for each patient from 2 measure values for nTAC iP , K pwiP ·t/ViP early and late in dialysis; we measured 8–10 serial values for nTAC iP , K pwiP · t/ViP over a single dialysis in 23 patients; the expression derived for iP mass balance is ΔTiP = 12(PCR) – [K pwiP (t) (N/7)][CoiP(1 – α(1 – exp[–β(Kt/ViP)]))] – k b ·Nb. Results: Calculated nTAC iP = 1.01(measured nTAC iP ), r = 0.98, n = 213; calculated JdiP = 0.66(measured total dialysate iP) + 358, n = 23, r = 0.88, p < 0.001. Evaluation of 10 daily HD patients (DD) and 13 3 times weekly patients with the model predicted the number of binders required very well and showed that the much higher binder requirement observed in these DD patients was due to much higher NPCR (1.3 vs. 0.96). Conclusion: These results are very encouraging that it may be possible to monitor the individual effects of diet, dialysis and binders in HD and thus optimize these parameters of iP mass balance and reduce phosphate accumulation in tissues.</abstract><cop>Basel, Switzerland</cop><pub>Karger</pub><pmid>12566662</pmid><doi>10.1159/000067866</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-5068 |
ispartof | Blood purification, 2003-01, Vol.21 (1), p.51-57 |
issn | 0253-5068 1421-9735 |
language | eng |
recordid | cdi_karger_primary_67866 |
source | Karger Journals; MEDLINE |
subjects | Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Biological and medical sciences Death Emergency and intensive care: renal failure. Dialysis management Humans Intensive care medicine Kinetics Medical sciences Models, Biological Models, Theoretical Phosphorus - blood Phosphorus - metabolism Phosphorus, Dietary - blood Phosphorus, Dietary - metabolism Renal Dialysis - adverse effects Renal Dialysis - methods Renal Dialysis - standards |
title | A Kinetic Model of Inorganic Phosphorus Mass Balance in Hemodialysis Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_karge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kinetic%20Model%20of%20Inorganic%20Phosphorus%20Mass%20Balance%20in%20Hemodialysis%20Therapy&rft.jtitle=Blood%20purification&rft.au=Gotch,%20Frank%20A.&rft.date=2003-01&rft.volume=21&rft.issue=1&rft.spage=51&rft.epage=57&rft.pages=51-57&rft.issn=0253-5068&rft.eissn=1421-9735&rft.isbn=3805575351&rft.isbn_list=9783805575355&rft.coden=BLPUDO&rft_id=info:doi/10.1159/000067866&rft_dat=%3Cproquest_karge%3E72997243%3C/proquest_karge%3E%3Curl%3E%3C/url%3E&rft.eisbn=3318009393&rft.eisbn_list=9783318009392&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72997243&rft_id=info:pmid/12566662&rfr_iscdi=true |