Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging
Background/Aims: Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels du...
Gespeichert in:
Veröffentlicht in: | Cellular physiology and biochemistry 2018, Vol.45 (4), p.1541-1550 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1550 |
---|---|
container_issue | 4 |
container_start_page | 1541 |
container_title | Cellular physiology and biochemistry |
container_volume | 45 |
creator | Zhou, Yingchao Xiao, Hong Wu, Jianfei Zha, Lingfeng Zhou, Mengchen Li, Qianqian Wang, Mengru Shi, Shumei Li, Yanze Lyu, Liangkun Wang, Qing Tu, Xin Lu, Qiulun |
description | Background/Aims: Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels during the early stages. Methods: Male Akita (Ins2 WT/C96Y ) mice were monitored with echocardiographic imaging at various ages, and then with conventional echocardiographic analysis and speckle-tracking based strain analyses. Results: With speckle-tracking based strain analyses, diabetic Akita mice showed changes in average global radial strain at the age of 12 weeks, as well as decreased longitudinal strain. These changes occurred in the early stage and remained throughout the progression of diabetic cardiomyopathy in Akita mice. Speckle-tracking showed that the detailed and precise changes of cardiac deformation in the progression of diabetic cardiomyopathy in the genetic type I diabetic Akita mice were uncoupled. Conclusions: We monitored early-stage changes in the heart of diabetic Akita mice. We utilize this technique to elucidate the underlying mechanism for heart failure in Akita genetic type I diabetic mice. It will further advance the assessment of cardiac abnormalities, as well as the discovery of new drug treatments using Akita genetic type I diabetic mice. |
doi_str_mv | 10.1159/000487690 |
format | Article |
fullrecord | <record><control><sourceid>proquest_karge</sourceid><recordid>TN_cdi_karger_primary_487690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85426fc29a33469288c09bcb724f6056</doaj_id><sourcerecordid>2008893953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3780-5e97b47f06ceb9ced9cc4d8692c63526f407fa8abc21542550ddfda7544d53413</originalsourceid><addsrcrecordid>eNptksGO0zAQhiMEYpeFA3eELHGBQ8B27Ng-dtsFKi0CqeUcTWyn9TaJg50KhWfiIXG3pSshLrZn9M3_e-zJspcEvyeEqw8YYyZFqfCj7JIwSnIlhHyczpjwXCopLrJnMd7hFApFn2YXVDFJiaKX2e_1NFi0RAsHtR2dRrOdGwF98fto02psi1xE8y0E0KMN7pc1qJ7QrO596KBFcwjGgUYL2xwSo_M9WuyD6zfoBkI7odUIGxuRbx4s7mt8N_kBxu2Efrpxi1aD1bvW5uvksztUX0NMVqsxgOvRsoNNSj7PnjTQRvvitF9l3z_erOef89uvn5bz2W2uCyFxzq0SNRMNLrWtlbZGac2MLBXVZcFp2TAsGpBQa0o4o5xjYxoDgjNmeMFIcZUtj7rGw101BNdBmCoPrrpP-LCpIKROWlvJJFA2miooCpYcpNRY1boWlDUl5mXSenvUGoL_sbdxrDoXtW1b6G165IpiLKUqFC8S-uYf9M7vQ586rSghgpSEcpaod0dKBx9jsM35ggRXh3GozuOQ2NcnxX3dWXMm__7_g-UOwsaGMzD_dn2UqAbTJOrVf6mTyx8-dsPu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117161254</pqid></control><display><type>article</type><title>Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Karger Open Access</source><creator>Zhou, Yingchao ; Xiao, Hong ; Wu, Jianfei ; Zha, Lingfeng ; Zhou, Mengchen ; Li, Qianqian ; Wang, Mengru ; Shi, Shumei ; Li, Yanze ; Lyu, Liangkun ; Wang, Qing ; Tu, Xin ; Lu, Qiulun</creator><creatorcontrib>Zhou, Yingchao ; Xiao, Hong ; Wu, Jianfei ; Zha, Lingfeng ; Zhou, Mengchen ; Li, Qianqian ; Wang, Mengru ; Shi, Shumei ; Li, Yanze ; Lyu, Liangkun ; Wang, Qing ; Tu, Xin ; Lu, Qiulun</creatorcontrib><description>Background/Aims: Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels during the early stages. Methods: Male Akita (Ins2 WT/C96Y ) mice were monitored with echocardiographic imaging at various ages, and then with conventional echocardiographic analysis and speckle-tracking based strain analyses. Results: With speckle-tracking based strain analyses, diabetic Akita mice showed changes in average global radial strain at the age of 12 weeks, as well as decreased longitudinal strain. These changes occurred in the early stage and remained throughout the progression of diabetic cardiomyopathy in Akita mice. Speckle-tracking showed that the detailed and precise changes of cardiac deformation in the progression of diabetic cardiomyopathy in the genetic type I diabetic Akita mice were uncoupled. Conclusions: We monitored early-stage changes in the heart of diabetic Akita mice. We utilize this technique to elucidate the underlying mechanism for heart failure in Akita genetic type I diabetic mice. It will further advance the assessment of cardiac abnormalities, as well as the discovery of new drug treatments using Akita genetic type I diabetic mice.</description><identifier>ISSN: 1015-8987</identifier><identifier>EISSN: 1421-9778</identifier><identifier>DOI: 10.1159/000487690</identifier><identifier>PMID: 29482192</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Angiogenesis ; Animals ; Atrial Natriuretic Factor - genetics ; Atrial Natriuretic Factor - metabolism ; Blood Glucose - analysis ; Body Weight ; Cardiac deformation ; Cardiomyopathy ; Diabetes ; Diabetes Mellitus, Type 1 - complications ; Diabetes Mellitus, Type 1 - metabolism ; Diabetes Mellitus, Type 1 - pathology ; Diabetic Cardiomyopathies - complications ; Diabetic Cardiomyopathies - pathology ; Diabetic cardiomyopathy ; Disease Models, Animal ; Echocardiography ; Experiments ; Female ; Flow velocity ; Heart - diagnostic imaging ; Heart failure ; Heart Rate ; Heart Ventricles - diagnostic imaging ; Laboratory animals ; Male ; Mice ; Mice, Inbred C57BL ; Mortality ; Myocardium - pathology ; Natriuretic Peptide, Brain - genetics ; Natriuretic Peptide, Brain - metabolism ; Original Paper ; Physiology ; Rodents ; Severity of Illness Index ; Speckle-tracking based strain imaging ; Ultrasonic imaging ; Ventricular Dysfunction, Left - physiopathology</subject><ispartof>Cellular physiology and biochemistry, 2018, Vol.45 (4), p.1541-1550</ispartof><rights>2018 The Author(s). Published by S. Karger AG, Basel</rights><rights>2018 The Author(s). Published by S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3780-5e97b47f06ceb9ced9cc4d8692c63526f407fa8abc21542550ddfda7544d53413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27612,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29482192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yingchao</creatorcontrib><creatorcontrib>Xiao, Hong</creatorcontrib><creatorcontrib>Wu, Jianfei</creatorcontrib><creatorcontrib>Zha, Lingfeng</creatorcontrib><creatorcontrib>Zhou, Mengchen</creatorcontrib><creatorcontrib>Li, Qianqian</creatorcontrib><creatorcontrib>Wang, Mengru</creatorcontrib><creatorcontrib>Shi, Shumei</creatorcontrib><creatorcontrib>Li, Yanze</creatorcontrib><creatorcontrib>Lyu, Liangkun</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Tu, Xin</creatorcontrib><creatorcontrib>Lu, Qiulun</creatorcontrib><title>Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging</title><title>Cellular physiology and biochemistry</title><addtitle>Cell Physiol Biochem</addtitle><description>Background/Aims: Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels during the early stages. Methods: Male Akita (Ins2 WT/C96Y ) mice were monitored with echocardiographic imaging at various ages, and then with conventional echocardiographic analysis and speckle-tracking based strain analyses. Results: With speckle-tracking based strain analyses, diabetic Akita mice showed changes in average global radial strain at the age of 12 weeks, as well as decreased longitudinal strain. These changes occurred in the early stage and remained throughout the progression of diabetic cardiomyopathy in Akita mice. Speckle-tracking showed that the detailed and precise changes of cardiac deformation in the progression of diabetic cardiomyopathy in the genetic type I diabetic Akita mice were uncoupled. Conclusions: We monitored early-stage changes in the heart of diabetic Akita mice. We utilize this technique to elucidate the underlying mechanism for heart failure in Akita genetic type I diabetic mice. It will further advance the assessment of cardiac abnormalities, as well as the discovery of new drug treatments using Akita genetic type I diabetic mice.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Atrial Natriuretic Factor - genetics</subject><subject>Atrial Natriuretic Factor - metabolism</subject><subject>Blood Glucose - analysis</subject><subject>Body Weight</subject><subject>Cardiac deformation</subject><subject>Cardiomyopathy</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 1 - complications</subject><subject>Diabetes Mellitus, Type 1 - metabolism</subject><subject>Diabetes Mellitus, Type 1 - pathology</subject><subject>Diabetic Cardiomyopathies - complications</subject><subject>Diabetic Cardiomyopathies - pathology</subject><subject>Diabetic cardiomyopathy</subject><subject>Disease Models, Animal</subject><subject>Echocardiography</subject><subject>Experiments</subject><subject>Female</subject><subject>Flow velocity</subject><subject>Heart - diagnostic imaging</subject><subject>Heart failure</subject><subject>Heart Rate</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mortality</subject><subject>Myocardium - pathology</subject><subject>Natriuretic Peptide, Brain - genetics</subject><subject>Natriuretic Peptide, Brain - metabolism</subject><subject>Original Paper</subject><subject>Physiology</subject><subject>Rodents</subject><subject>Severity of Illness Index</subject><subject>Speckle-tracking based strain imaging</subject><subject>Ultrasonic imaging</subject><subject>Ventricular Dysfunction, Left - physiopathology</subject><issn>1015-8987</issn><issn>1421-9778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M--</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptksGO0zAQhiMEYpeFA3eELHGBQ8B27Ng-dtsFKi0CqeUcTWyn9TaJg50KhWfiIXG3pSshLrZn9M3_e-zJspcEvyeEqw8YYyZFqfCj7JIwSnIlhHyczpjwXCopLrJnMd7hFApFn2YXVDFJiaKX2e_1NFi0RAsHtR2dRrOdGwF98fto02psi1xE8y0E0KMN7pc1qJ7QrO596KBFcwjGgUYL2xwSo_M9WuyD6zfoBkI7odUIGxuRbx4s7mt8N_kBxu2Efrpxi1aD1bvW5uvksztUX0NMVqsxgOvRsoNNSj7PnjTQRvvitF9l3z_erOef89uvn5bz2W2uCyFxzq0SNRMNLrWtlbZGac2MLBXVZcFp2TAsGpBQa0o4o5xjYxoDgjNmeMFIcZUtj7rGw101BNdBmCoPrrpP-LCpIKROWlvJJFA2miooCpYcpNRY1boWlDUl5mXSenvUGoL_sbdxrDoXtW1b6G165IpiLKUqFC8S-uYf9M7vQ586rSghgpSEcpaod0dKBx9jsM35ggRXh3GozuOQ2NcnxX3dWXMm__7_g-UOwsaGMzD_dn2UqAbTJOrVf6mTyx8-dsPu</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zhou, Yingchao</creator><creator>Xiao, Hong</creator><creator>Wu, Jianfei</creator><creator>Zha, Lingfeng</creator><creator>Zhou, Mengchen</creator><creator>Li, Qianqian</creator><creator>Wang, Mengru</creator><creator>Shi, Shumei</creator><creator>Li, Yanze</creator><creator>Lyu, Liangkun</creator><creator>Wang, Qing</creator><creator>Tu, Xin</creator><creator>Lu, Qiulun</creator><general>S. Karger AG</general><general>Cell Physiol Biochem Press GmbH & Co KG</general><scope>M--</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>2018</creationdate><title>Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging</title><author>Zhou, Yingchao ; Xiao, Hong ; Wu, Jianfei ; Zha, Lingfeng ; Zhou, Mengchen ; Li, Qianqian ; Wang, Mengru ; Shi, Shumei ; Li, Yanze ; Lyu, Liangkun ; Wang, Qing ; Tu, Xin ; Lu, Qiulun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3780-5e97b47f06ceb9ced9cc4d8692c63526f407fa8abc21542550ddfda7544d53413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Atrial Natriuretic Factor - genetics</topic><topic>Atrial Natriuretic Factor - metabolism</topic><topic>Blood Glucose - analysis</topic><topic>Body Weight</topic><topic>Cardiac deformation</topic><topic>Cardiomyopathy</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 1 - complications</topic><topic>Diabetes Mellitus, Type 1 - metabolism</topic><topic>Diabetes Mellitus, Type 1 - pathology</topic><topic>Diabetic Cardiomyopathies - complications</topic><topic>Diabetic Cardiomyopathies - pathology</topic><topic>Diabetic cardiomyopathy</topic><topic>Disease Models, Animal</topic><topic>Echocardiography</topic><topic>Experiments</topic><topic>Female</topic><topic>Flow velocity</topic><topic>Heart - diagnostic imaging</topic><topic>Heart failure</topic><topic>Heart Rate</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mortality</topic><topic>Myocardium - pathology</topic><topic>Natriuretic Peptide, Brain - genetics</topic><topic>Natriuretic Peptide, Brain - metabolism</topic><topic>Original Paper</topic><topic>Physiology</topic><topic>Rodents</topic><topic>Severity of Illness Index</topic><topic>Speckle-tracking based strain imaging</topic><topic>Ultrasonic imaging</topic><topic>Ventricular Dysfunction, Left - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yingchao</creatorcontrib><creatorcontrib>Xiao, Hong</creatorcontrib><creatorcontrib>Wu, Jianfei</creatorcontrib><creatorcontrib>Zha, Lingfeng</creatorcontrib><creatorcontrib>Zhou, Mengchen</creatorcontrib><creatorcontrib>Li, Qianqian</creatorcontrib><creatorcontrib>Wang, Mengru</creatorcontrib><creatorcontrib>Shi, Shumei</creatorcontrib><creatorcontrib>Li, Yanze</creatorcontrib><creatorcontrib>Lyu, Liangkun</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Tu, Xin</creatorcontrib><creatorcontrib>Lu, Qiulun</creatorcontrib><collection>Karger Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cellular physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yingchao</au><au>Xiao, Hong</au><au>Wu, Jianfei</au><au>Zha, Lingfeng</au><au>Zhou, Mengchen</au><au>Li, Qianqian</au><au>Wang, Mengru</au><au>Shi, Shumei</au><au>Li, Yanze</au><au>Lyu, Liangkun</au><au>Wang, Qing</au><au>Tu, Xin</au><au>Lu, Qiulun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging</atitle><jtitle>Cellular physiology and biochemistry</jtitle><addtitle>Cell Physiol Biochem</addtitle><date>2018</date><risdate>2018</risdate><volume>45</volume><issue>4</issue><spage>1541</spage><epage>1550</epage><pages>1541-1550</pages><issn>1015-8987</issn><eissn>1421-9778</eissn><abstract>Background/Aims: Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels during the early stages. Methods: Male Akita (Ins2 WT/C96Y ) mice were monitored with echocardiographic imaging at various ages, and then with conventional echocardiographic analysis and speckle-tracking based strain analyses. Results: With speckle-tracking based strain analyses, diabetic Akita mice showed changes in average global radial strain at the age of 12 weeks, as well as decreased longitudinal strain. These changes occurred in the early stage and remained throughout the progression of diabetic cardiomyopathy in Akita mice. Speckle-tracking showed that the detailed and precise changes of cardiac deformation in the progression of diabetic cardiomyopathy in the genetic type I diabetic Akita mice were uncoupled. Conclusions: We monitored early-stage changes in the heart of diabetic Akita mice. We utilize this technique to elucidate the underlying mechanism for heart failure in Akita genetic type I diabetic mice. It will further advance the assessment of cardiac abnormalities, as well as the discovery of new drug treatments using Akita genetic type I diabetic mice.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>29482192</pmid><doi>10.1159/000487690</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1015-8987 |
ispartof | Cellular physiology and biochemistry, 2018, Vol.45 (4), p.1541-1550 |
issn | 1015-8987 1421-9778 |
language | eng |
recordid | cdi_karger_primary_487690 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Karger Open Access |
subjects | Angiogenesis Animals Atrial Natriuretic Factor - genetics Atrial Natriuretic Factor - metabolism Blood Glucose - analysis Body Weight Cardiac deformation Cardiomyopathy Diabetes Diabetes Mellitus, Type 1 - complications Diabetes Mellitus, Type 1 - metabolism Diabetes Mellitus, Type 1 - pathology Diabetic Cardiomyopathies - complications Diabetic Cardiomyopathies - pathology Diabetic cardiomyopathy Disease Models, Animal Echocardiography Experiments Female Flow velocity Heart - diagnostic imaging Heart failure Heart Rate Heart Ventricles - diagnostic imaging Laboratory animals Male Mice Mice, Inbred C57BL Mortality Myocardium - pathology Natriuretic Peptide, Brain - genetics Natriuretic Peptide, Brain - metabolism Original Paper Physiology Rodents Severity of Illness Index Speckle-tracking based strain imaging Ultrasonic imaging Ventricular Dysfunction, Left - physiopathology |
title | Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_karge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Type%20I%20Diabetic%20Akita%20Mouse%20Model%20is%20Characterized%20by%20Abnormal%20Cardiac%20Deformation%20During%20Early%20Stages%20of%20Diabetic%20Cardiomyopathy%20with%20Speckle-Tracking%20Based%20Strain%20Imaging&rft.jtitle=Cellular%20physiology%20and%20biochemistry&rft.au=Zhou,%20Yingchao&rft.date=2018&rft.volume=45&rft.issue=4&rft.spage=1541&rft.epage=1550&rft.pages=1541-1550&rft.issn=1015-8987&rft.eissn=1421-9778&rft_id=info:doi/10.1159/000487690&rft_dat=%3Cproquest_karge%3E2008893953%3C/proquest_karge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117161254&rft_id=info:pmid/29482192&rft_doaj_id=oai_doaj_org_article_85426fc29a33469288c09bcb724f6056&rfr_iscdi=true |