Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging

Background/Aims: Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2018, Vol.45 (4), p.1541-1550
Hauptverfasser: Zhou, Yingchao, Xiao, Hong, Wu, Jianfei, Zha, Lingfeng, Zhou, Mengchen, Li, Qianqian, Wang, Mengru, Shi, Shumei, Li, Yanze, Lyu, Liangkun, Wang, Qing, Tu, Xin, Lu, Qiulun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1550
container_issue 4
container_start_page 1541
container_title Cellular physiology and biochemistry
container_volume 45
creator Zhou, Yingchao
Xiao, Hong
Wu, Jianfei
Zha, Lingfeng
Zhou, Mengchen
Li, Qianqian
Wang, Mengru
Shi, Shumei
Li, Yanze
Lyu, Liangkun
Wang, Qing
Tu, Xin
Lu, Qiulun
description Background/Aims: Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels during the early stages. Methods: Male Akita (Ins2 WT/C96Y ) mice were monitored with echocardiographic imaging at various ages, and then with conventional echocardiographic analysis and speckle-tracking based strain analyses. Results: With speckle-tracking based strain analyses, diabetic Akita mice showed changes in average global radial strain at the age of 12 weeks, as well as decreased longitudinal strain. These changes occurred in the early stage and remained throughout the progression of diabetic cardiomyopathy in Akita mice. Speckle-tracking showed that the detailed and precise changes of cardiac deformation in the progression of diabetic cardiomyopathy in the genetic type I diabetic Akita mice were uncoupled. Conclusions: We monitored early-stage changes in the heart of diabetic Akita mice. We utilize this technique to elucidate the underlying mechanism for heart failure in Akita genetic type I diabetic mice. It will further advance the assessment of cardiac abnormalities, as well as the discovery of new drug treatments using Akita genetic type I diabetic mice.
doi_str_mv 10.1159/000487690
format Article
fullrecord <record><control><sourceid>proquest_karge</sourceid><recordid>TN_cdi_karger_primary_487690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85426fc29a33469288c09bcb724f6056</doaj_id><sourcerecordid>2008893953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3780-5e97b47f06ceb9ced9cc4d8692c63526f407fa8abc21542550ddfda7544d53413</originalsourceid><addsrcrecordid>eNptksGO0zAQhiMEYpeFA3eELHGBQ8B27Ng-dtsFKi0CqeUcTWyn9TaJg50KhWfiIXG3pSshLrZn9M3_e-zJspcEvyeEqw8YYyZFqfCj7JIwSnIlhHyczpjwXCopLrJnMd7hFApFn2YXVDFJiaKX2e_1NFi0RAsHtR2dRrOdGwF98fto02psi1xE8y0E0KMN7pc1qJ7QrO596KBFcwjGgUYL2xwSo_M9WuyD6zfoBkI7odUIGxuRbx4s7mt8N_kBxu2Efrpxi1aD1bvW5uvksztUX0NMVqsxgOvRsoNNSj7PnjTQRvvitF9l3z_erOef89uvn5bz2W2uCyFxzq0SNRMNLrWtlbZGac2MLBXVZcFp2TAsGpBQa0o4o5xjYxoDgjNmeMFIcZUtj7rGw101BNdBmCoPrrpP-LCpIKROWlvJJFA2miooCpYcpNRY1boWlDUl5mXSenvUGoL_sbdxrDoXtW1b6G165IpiLKUqFC8S-uYf9M7vQ586rSghgpSEcpaod0dKBx9jsM35ggRXh3GozuOQ2NcnxX3dWXMm__7_g-UOwsaGMzD_dn2UqAbTJOrVf6mTyx8-dsPu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117161254</pqid></control><display><type>article</type><title>Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Karger Open Access</source><creator>Zhou, Yingchao ; Xiao, Hong ; Wu, Jianfei ; Zha, Lingfeng ; Zhou, Mengchen ; Li, Qianqian ; Wang, Mengru ; Shi, Shumei ; Li, Yanze ; Lyu, Liangkun ; Wang, Qing ; Tu, Xin ; Lu, Qiulun</creator><creatorcontrib>Zhou, Yingchao ; Xiao, Hong ; Wu, Jianfei ; Zha, Lingfeng ; Zhou, Mengchen ; Li, Qianqian ; Wang, Mengru ; Shi, Shumei ; Li, Yanze ; Lyu, Liangkun ; Wang, Qing ; Tu, Xin ; Lu, Qiulun</creatorcontrib><description>Background/Aims: Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels during the early stages. Methods: Male Akita (Ins2 WT/C96Y ) mice were monitored with echocardiographic imaging at various ages, and then with conventional echocardiographic analysis and speckle-tracking based strain analyses. Results: With speckle-tracking based strain analyses, diabetic Akita mice showed changes in average global radial strain at the age of 12 weeks, as well as decreased longitudinal strain. These changes occurred in the early stage and remained throughout the progression of diabetic cardiomyopathy in Akita mice. Speckle-tracking showed that the detailed and precise changes of cardiac deformation in the progression of diabetic cardiomyopathy in the genetic type I diabetic Akita mice were uncoupled. Conclusions: We monitored early-stage changes in the heart of diabetic Akita mice. We utilize this technique to elucidate the underlying mechanism for heart failure in Akita genetic type I diabetic mice. It will further advance the assessment of cardiac abnormalities, as well as the discovery of new drug treatments using Akita genetic type I diabetic mice.</description><identifier>ISSN: 1015-8987</identifier><identifier>EISSN: 1421-9778</identifier><identifier>DOI: 10.1159/000487690</identifier><identifier>PMID: 29482192</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Angiogenesis ; Animals ; Atrial Natriuretic Factor - genetics ; Atrial Natriuretic Factor - metabolism ; Blood Glucose - analysis ; Body Weight ; Cardiac deformation ; Cardiomyopathy ; Diabetes ; Diabetes Mellitus, Type 1 - complications ; Diabetes Mellitus, Type 1 - metabolism ; Diabetes Mellitus, Type 1 - pathology ; Diabetic Cardiomyopathies - complications ; Diabetic Cardiomyopathies - pathology ; Diabetic cardiomyopathy ; Disease Models, Animal ; Echocardiography ; Experiments ; Female ; Flow velocity ; Heart - diagnostic imaging ; Heart failure ; Heart Rate ; Heart Ventricles - diagnostic imaging ; Laboratory animals ; Male ; Mice ; Mice, Inbred C57BL ; Mortality ; Myocardium - pathology ; Natriuretic Peptide, Brain - genetics ; Natriuretic Peptide, Brain - metabolism ; Original Paper ; Physiology ; Rodents ; Severity of Illness Index ; Speckle-tracking based strain imaging ; Ultrasonic imaging ; Ventricular Dysfunction, Left - physiopathology</subject><ispartof>Cellular physiology and biochemistry, 2018, Vol.45 (4), p.1541-1550</ispartof><rights>2018 The Author(s). Published by S. Karger AG, Basel</rights><rights>2018 The Author(s). Published by S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3780-5e97b47f06ceb9ced9cc4d8692c63526f407fa8abc21542550ddfda7544d53413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27612,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29482192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yingchao</creatorcontrib><creatorcontrib>Xiao, Hong</creatorcontrib><creatorcontrib>Wu, Jianfei</creatorcontrib><creatorcontrib>Zha, Lingfeng</creatorcontrib><creatorcontrib>Zhou, Mengchen</creatorcontrib><creatorcontrib>Li, Qianqian</creatorcontrib><creatorcontrib>Wang, Mengru</creatorcontrib><creatorcontrib>Shi, Shumei</creatorcontrib><creatorcontrib>Li, Yanze</creatorcontrib><creatorcontrib>Lyu, Liangkun</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Tu, Xin</creatorcontrib><creatorcontrib>Lu, Qiulun</creatorcontrib><title>Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging</title><title>Cellular physiology and biochemistry</title><addtitle>Cell Physiol Biochem</addtitle><description>Background/Aims: Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels during the early stages. Methods: Male Akita (Ins2 WT/C96Y ) mice were monitored with echocardiographic imaging at various ages, and then with conventional echocardiographic analysis and speckle-tracking based strain analyses. Results: With speckle-tracking based strain analyses, diabetic Akita mice showed changes in average global radial strain at the age of 12 weeks, as well as decreased longitudinal strain. These changes occurred in the early stage and remained throughout the progression of diabetic cardiomyopathy in Akita mice. Speckle-tracking showed that the detailed and precise changes of cardiac deformation in the progression of diabetic cardiomyopathy in the genetic type I diabetic Akita mice were uncoupled. Conclusions: We monitored early-stage changes in the heart of diabetic Akita mice. We utilize this technique to elucidate the underlying mechanism for heart failure in Akita genetic type I diabetic mice. It will further advance the assessment of cardiac abnormalities, as well as the discovery of new drug treatments using Akita genetic type I diabetic mice.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Atrial Natriuretic Factor - genetics</subject><subject>Atrial Natriuretic Factor - metabolism</subject><subject>Blood Glucose - analysis</subject><subject>Body Weight</subject><subject>Cardiac deformation</subject><subject>Cardiomyopathy</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 1 - complications</subject><subject>Diabetes Mellitus, Type 1 - metabolism</subject><subject>Diabetes Mellitus, Type 1 - pathology</subject><subject>Diabetic Cardiomyopathies - complications</subject><subject>Diabetic Cardiomyopathies - pathology</subject><subject>Diabetic cardiomyopathy</subject><subject>Disease Models, Animal</subject><subject>Echocardiography</subject><subject>Experiments</subject><subject>Female</subject><subject>Flow velocity</subject><subject>Heart - diagnostic imaging</subject><subject>Heart failure</subject><subject>Heart Rate</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mortality</subject><subject>Myocardium - pathology</subject><subject>Natriuretic Peptide, Brain - genetics</subject><subject>Natriuretic Peptide, Brain - metabolism</subject><subject>Original Paper</subject><subject>Physiology</subject><subject>Rodents</subject><subject>Severity of Illness Index</subject><subject>Speckle-tracking based strain imaging</subject><subject>Ultrasonic imaging</subject><subject>Ventricular Dysfunction, Left - physiopathology</subject><issn>1015-8987</issn><issn>1421-9778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M--</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptksGO0zAQhiMEYpeFA3eELHGBQ8B27Ng-dtsFKi0CqeUcTWyn9TaJg50KhWfiIXG3pSshLrZn9M3_e-zJspcEvyeEqw8YYyZFqfCj7JIwSnIlhHyczpjwXCopLrJnMd7hFApFn2YXVDFJiaKX2e_1NFi0RAsHtR2dRrOdGwF98fto02psi1xE8y0E0KMN7pc1qJ7QrO596KBFcwjGgUYL2xwSo_M9WuyD6zfoBkI7odUIGxuRbx4s7mt8N_kBxu2Efrpxi1aD1bvW5uvksztUX0NMVqsxgOvRsoNNSj7PnjTQRvvitF9l3z_erOef89uvn5bz2W2uCyFxzq0SNRMNLrWtlbZGac2MLBXVZcFp2TAsGpBQa0o4o5xjYxoDgjNmeMFIcZUtj7rGw101BNdBmCoPrrpP-LCpIKROWlvJJFA2miooCpYcpNRY1boWlDUl5mXSenvUGoL_sbdxrDoXtW1b6G165IpiLKUqFC8S-uYf9M7vQ586rSghgpSEcpaod0dKBx9jsM35ggRXh3GozuOQ2NcnxX3dWXMm__7_g-UOwsaGMzD_dn2UqAbTJOrVf6mTyx8-dsPu</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zhou, Yingchao</creator><creator>Xiao, Hong</creator><creator>Wu, Jianfei</creator><creator>Zha, Lingfeng</creator><creator>Zhou, Mengchen</creator><creator>Li, Qianqian</creator><creator>Wang, Mengru</creator><creator>Shi, Shumei</creator><creator>Li, Yanze</creator><creator>Lyu, Liangkun</creator><creator>Wang, Qing</creator><creator>Tu, Xin</creator><creator>Lu, Qiulun</creator><general>S. Karger AG</general><general>Cell Physiol Biochem Press GmbH &amp; Co KG</general><scope>M--</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>2018</creationdate><title>Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging</title><author>Zhou, Yingchao ; Xiao, Hong ; Wu, Jianfei ; Zha, Lingfeng ; Zhou, Mengchen ; Li, Qianqian ; Wang, Mengru ; Shi, Shumei ; Li, Yanze ; Lyu, Liangkun ; Wang, Qing ; Tu, Xin ; Lu, Qiulun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3780-5e97b47f06ceb9ced9cc4d8692c63526f407fa8abc21542550ddfda7544d53413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Atrial Natriuretic Factor - genetics</topic><topic>Atrial Natriuretic Factor - metabolism</topic><topic>Blood Glucose - analysis</topic><topic>Body Weight</topic><topic>Cardiac deformation</topic><topic>Cardiomyopathy</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 1 - complications</topic><topic>Diabetes Mellitus, Type 1 - metabolism</topic><topic>Diabetes Mellitus, Type 1 - pathology</topic><topic>Diabetic Cardiomyopathies - complications</topic><topic>Diabetic Cardiomyopathies - pathology</topic><topic>Diabetic cardiomyopathy</topic><topic>Disease Models, Animal</topic><topic>Echocardiography</topic><topic>Experiments</topic><topic>Female</topic><topic>Flow velocity</topic><topic>Heart - diagnostic imaging</topic><topic>Heart failure</topic><topic>Heart Rate</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mortality</topic><topic>Myocardium - pathology</topic><topic>Natriuretic Peptide, Brain - genetics</topic><topic>Natriuretic Peptide, Brain - metabolism</topic><topic>Original Paper</topic><topic>Physiology</topic><topic>Rodents</topic><topic>Severity of Illness Index</topic><topic>Speckle-tracking based strain imaging</topic><topic>Ultrasonic imaging</topic><topic>Ventricular Dysfunction, Left - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yingchao</creatorcontrib><creatorcontrib>Xiao, Hong</creatorcontrib><creatorcontrib>Wu, Jianfei</creatorcontrib><creatorcontrib>Zha, Lingfeng</creatorcontrib><creatorcontrib>Zhou, Mengchen</creatorcontrib><creatorcontrib>Li, Qianqian</creatorcontrib><creatorcontrib>Wang, Mengru</creatorcontrib><creatorcontrib>Shi, Shumei</creatorcontrib><creatorcontrib>Li, Yanze</creatorcontrib><creatorcontrib>Lyu, Liangkun</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Tu, Xin</creatorcontrib><creatorcontrib>Lu, Qiulun</creatorcontrib><collection>Karger Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cellular physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yingchao</au><au>Xiao, Hong</au><au>Wu, Jianfei</au><au>Zha, Lingfeng</au><au>Zhou, Mengchen</au><au>Li, Qianqian</au><au>Wang, Mengru</au><au>Shi, Shumei</au><au>Li, Yanze</au><au>Lyu, Liangkun</au><au>Wang, Qing</au><au>Tu, Xin</au><au>Lu, Qiulun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging</atitle><jtitle>Cellular physiology and biochemistry</jtitle><addtitle>Cell Physiol Biochem</addtitle><date>2018</date><risdate>2018</risdate><volume>45</volume><issue>4</issue><spage>1541</spage><epage>1550</epage><pages>1541-1550</pages><issn>1015-8987</issn><eissn>1421-9778</eissn><abstract>Background/Aims: Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels during the early stages. Methods: Male Akita (Ins2 WT/C96Y ) mice were monitored with echocardiographic imaging at various ages, and then with conventional echocardiographic analysis and speckle-tracking based strain analyses. Results: With speckle-tracking based strain analyses, diabetic Akita mice showed changes in average global radial strain at the age of 12 weeks, as well as decreased longitudinal strain. These changes occurred in the early stage and remained throughout the progression of diabetic cardiomyopathy in Akita mice. Speckle-tracking showed that the detailed and precise changes of cardiac deformation in the progression of diabetic cardiomyopathy in the genetic type I diabetic Akita mice were uncoupled. Conclusions: We monitored early-stage changes in the heart of diabetic Akita mice. We utilize this technique to elucidate the underlying mechanism for heart failure in Akita genetic type I diabetic mice. It will further advance the assessment of cardiac abnormalities, as well as the discovery of new drug treatments using Akita genetic type I diabetic mice.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>29482192</pmid><doi>10.1159/000487690</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1015-8987
ispartof Cellular physiology and biochemistry, 2018, Vol.45 (4), p.1541-1550
issn 1015-8987
1421-9778
language eng
recordid cdi_karger_primary_487690
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Karger Open Access
subjects Angiogenesis
Animals
Atrial Natriuretic Factor - genetics
Atrial Natriuretic Factor - metabolism
Blood Glucose - analysis
Body Weight
Cardiac deformation
Cardiomyopathy
Diabetes
Diabetes Mellitus, Type 1 - complications
Diabetes Mellitus, Type 1 - metabolism
Diabetes Mellitus, Type 1 - pathology
Diabetic Cardiomyopathies - complications
Diabetic Cardiomyopathies - pathology
Diabetic cardiomyopathy
Disease Models, Animal
Echocardiography
Experiments
Female
Flow velocity
Heart - diagnostic imaging
Heart failure
Heart Rate
Heart Ventricles - diagnostic imaging
Laboratory animals
Male
Mice
Mice, Inbred C57BL
Mortality
Myocardium - pathology
Natriuretic Peptide, Brain - genetics
Natriuretic Peptide, Brain - metabolism
Original Paper
Physiology
Rodents
Severity of Illness Index
Speckle-tracking based strain imaging
Ultrasonic imaging
Ventricular Dysfunction, Left - physiopathology
title Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_karge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Type%20I%20Diabetic%20Akita%20Mouse%20Model%20is%20Characterized%20by%20Abnormal%20Cardiac%20Deformation%20During%20Early%20Stages%20of%20Diabetic%20Cardiomyopathy%20with%20Speckle-Tracking%20Based%20Strain%20Imaging&rft.jtitle=Cellular%20physiology%20and%20biochemistry&rft.au=Zhou,%20Yingchao&rft.date=2018&rft.volume=45&rft.issue=4&rft.spage=1541&rft.epage=1550&rft.pages=1541-1550&rft.issn=1015-8987&rft.eissn=1421-9778&rft_id=info:doi/10.1159/000487690&rft_dat=%3Cproquest_karge%3E2008893953%3C/proquest_karge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117161254&rft_id=info:pmid/29482192&rft_doaj_id=oai_doaj_org_article_85426fc29a33469288c09bcb724f6056&rfr_iscdi=true