Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation
Background: The introduction of gene testing for Huntington’s disease (HD) has enabled the neuropsychiatric and cognitive profiling of human gene carriers prior to the onset of overt motor and cognitive symptoms. Such studies reveal an early decline in working memory and executive function, altered...
Gespeichert in:
Veröffentlicht in: | Neuro-degenerative diseases 2011-05, Vol.8 (4), p.230-239 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 4 |
container_start_page | 230 |
container_title | Neuro-degenerative diseases |
container_volume | 8 |
creator | Dallérac, G.M. Vatsavayai, S.C. Cummings, D.M. Milnerwood, A.J. Peddie, C.J. Evans, K.A. Walters, S.W. Rezaie, P. Hirst, M.C. Murphy, K.P.S.J. |
description | Background: The introduction of gene testing for Huntington’s disease (HD) has enabled the neuropsychiatric and cognitive profiling of human gene carriers prior to the onset of overt motor and cognitive symptoms. Such studies reveal an early decline in working memory and executive function, altered EEG and a loss of striatal dopamine receptors. Working memory is processed in the prefrontal cortex and modulated by extrinsic dopaminergic inputs. Objective: We sought to study excitatory synaptic function and plasticity in the medial prefrontal cortex of mouse models of HD. Methods: We have used 2 mouse models of HD, carrying 89 and 116 CAG repeats (corresponding to a preclinical and symptomatic state, respectively) and performed electrophysiological field recording in coronal slices of the medial prefrontal cortex. Results: We report that short-term synaptic plasticity and long-term potentiation (LTP) are impaired and that the severity of impairment is correlated with the size of the CAG repeat. Remarkably, the deficits in LTP and short-term plasticity are reversed in the presence of a D 1 dopamine receptor agonist (SKF38393). Conclusion: In a previous study, we demonstrated that a deficit in long-term depression (LTD) in the perirhinal cortex could also be reversed by a dopamine agonist. These and our current data indicate that inadequate dopaminergic modulation of cortical synaptic function is an early event in HD and may provide a route for the alleviation of cognitive dysfunction. |
doi_str_mv | 10.1159/000322540 |
format | Article |
fullrecord | <record><control><sourceid>proquest_karge</sourceid><recordid>TN_cdi_karger_primary_322540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>866053591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-53d33d220bd117d0a184a87b30ceefdec6bc7bdfcf6c2943dec55fc1551911923</originalsourceid><addsrcrecordid>eNqF0c1u1DAQAGALgWgpHLgjZIkD4hDwT-zE3KpdoJUWUaFyjhx7srgkdmo7iN448wa8Hk-C6S574MLFtkafZ-wZhB5T8pJSoV4RQjhjoiZ30DGVklSslezu4SzqI_QgpStCmGoUvY-OGGUtU7w5Rj_Op1m7CBZvgt9WlxAnfBEy-Ox0dsFj53H-DPgiwhCDz3rEqxAzfMNhwGdLYX6bg__1_WfCa5dAJ8Dvw3K7WhjTa_wRklkA9zd4TfE6zHpyHkrUwJxDxKcmu6-3pR6ie4MeEzza7yfo09s3l6uzavPh3fnqdFMZXstcCW45t4yR3lLaWKJpW-u26TkxAIMFI3vT9HYwgzRM1bxEhBgMFYIqShXjJ-j5Lu8cw_UCKXeTSwbGUXsoL-_aRrJalr7-X5b-Ci4ULfLZP_IqLNGXb3SUtFQqrmpZ1IudMjGkVDrazdFNOt4U1P2ZZHeYZLFP9xmXfgJ7kH9HV8CTHfii4xbiAezv_wbAk6K1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081693946</pqid></control><display><type>article</type><title>Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation</title><source>Karger Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Dallérac, G.M. ; Vatsavayai, S.C. ; Cummings, D.M. ; Milnerwood, A.J. ; Peddie, C.J. ; Evans, K.A. ; Walters, S.W. ; Rezaie, P. ; Hirst, M.C. ; Murphy, K.P.S.J.</creator><creatorcontrib>Dallérac, G.M. ; Vatsavayai, S.C. ; Cummings, D.M. ; Milnerwood, A.J. ; Peddie, C.J. ; Evans, K.A. ; Walters, S.W. ; Rezaie, P. ; Hirst, M.C. ; Murphy, K.P.S.J.</creatorcontrib><description>Background: The introduction of gene testing for Huntington’s disease (HD) has enabled the neuropsychiatric and cognitive profiling of human gene carriers prior to the onset of overt motor and cognitive symptoms. Such studies reveal an early decline in working memory and executive function, altered EEG and a loss of striatal dopamine receptors. Working memory is processed in the prefrontal cortex and modulated by extrinsic dopaminergic inputs. Objective: We sought to study excitatory synaptic function and plasticity in the medial prefrontal cortex of mouse models of HD. Methods: We have used 2 mouse models of HD, carrying 89 and 116 CAG repeats (corresponding to a preclinical and symptomatic state, respectively) and performed electrophysiological field recording in coronal slices of the medial prefrontal cortex. Results: We report that short-term synaptic plasticity and long-term potentiation (LTP) are impaired and that the severity of impairment is correlated with the size of the CAG repeat. Remarkably, the deficits in LTP and short-term plasticity are reversed in the presence of a D 1 dopamine receptor agonist (SKF38393). Conclusion: In a previous study, we demonstrated that a deficit in long-term depression (LTD) in the perirhinal cortex could also be reversed by a dopamine agonist. These and our current data indicate that inadequate dopaminergic modulation of cortical synaptic function is an early event in HD and may provide a route for the alleviation of cognitive dysfunction.</description><identifier>ISSN: 1660-2854</identifier><identifier>EISSN: 1660-2862</identifier><identifier>DOI: 10.1159/000322540</identifier><identifier>PMID: 21282937</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Animals ; Disease Models, Animal ; Dopamine Agonists - pharmacology ; Electrophysiology ; Female ; Huntington Disease - physiopathology ; Immunohistochemistry ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; Male ; Mice ; Mice, Transgenic ; Organ Culture Techniques ; Original Paper ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - physiopathology ; Receptors, Dopamine D1 - metabolism ; Synaptic Transmission - physiology</subject><ispartof>Neuro-degenerative diseases, 2011-05, Vol.8 (4), p.230-239</ispartof><rights>2011 S. Karger AG, Basel</rights><rights>Copyright © 2011 S. Karger AG, Basel.</rights><rights>Copyright (c) 2011 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-53d33d220bd117d0a184a87b30ceefdec6bc7bdfcf6c2943dec55fc1551911923</citedby><cites>FETCH-LOGICAL-c346t-53d33d220bd117d0a184a87b30ceefdec6bc7bdfcf6c2943dec55fc1551911923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2423,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21282937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dallérac, G.M.</creatorcontrib><creatorcontrib>Vatsavayai, S.C.</creatorcontrib><creatorcontrib>Cummings, D.M.</creatorcontrib><creatorcontrib>Milnerwood, A.J.</creatorcontrib><creatorcontrib>Peddie, C.J.</creatorcontrib><creatorcontrib>Evans, K.A.</creatorcontrib><creatorcontrib>Walters, S.W.</creatorcontrib><creatorcontrib>Rezaie, P.</creatorcontrib><creatorcontrib>Hirst, M.C.</creatorcontrib><creatorcontrib>Murphy, K.P.S.J.</creatorcontrib><title>Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation</title><title>Neuro-degenerative diseases</title><addtitle>Neurodegener Dis</addtitle><description>Background: The introduction of gene testing for Huntington’s disease (HD) has enabled the neuropsychiatric and cognitive profiling of human gene carriers prior to the onset of overt motor and cognitive symptoms. Such studies reveal an early decline in working memory and executive function, altered EEG and a loss of striatal dopamine receptors. Working memory is processed in the prefrontal cortex and modulated by extrinsic dopaminergic inputs. Objective: We sought to study excitatory synaptic function and plasticity in the medial prefrontal cortex of mouse models of HD. Methods: We have used 2 mouse models of HD, carrying 89 and 116 CAG repeats (corresponding to a preclinical and symptomatic state, respectively) and performed electrophysiological field recording in coronal slices of the medial prefrontal cortex. Results: We report that short-term synaptic plasticity and long-term potentiation (LTP) are impaired and that the severity of impairment is correlated with the size of the CAG repeat. Remarkably, the deficits in LTP and short-term plasticity are reversed in the presence of a D 1 dopamine receptor agonist (SKF38393). Conclusion: In a previous study, we demonstrated that a deficit in long-term depression (LTD) in the perirhinal cortex could also be reversed by a dopamine agonist. These and our current data indicate that inadequate dopaminergic modulation of cortical synaptic function is an early event in HD and may provide a route for the alleviation of cognitive dysfunction.</description><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>Dopamine Agonists - pharmacology</subject><subject>Electrophysiology</subject><subject>Female</subject><subject>Huntington Disease - physiopathology</subject><subject>Immunohistochemistry</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Organ Culture Techniques</subject><subject>Original Paper</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - physiopathology</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Synaptic Transmission - physiology</subject><issn>1660-2854</issn><issn>1660-2862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0c1u1DAQAGALgWgpHLgjZIkD4hDwT-zE3KpdoJUWUaFyjhx7srgkdmo7iN448wa8Hk-C6S574MLFtkafZ-wZhB5T8pJSoV4RQjhjoiZ30DGVklSslezu4SzqI_QgpStCmGoUvY-OGGUtU7w5Rj_Op1m7CBZvgt9WlxAnfBEy-Ox0dsFj53H-DPgiwhCDz3rEqxAzfMNhwGdLYX6bg__1_WfCa5dAJ8Dvw3K7WhjTa_wRklkA9zd4TfE6zHpyHkrUwJxDxKcmu6-3pR6ie4MeEzza7yfo09s3l6uzavPh3fnqdFMZXstcCW45t4yR3lLaWKJpW-u26TkxAIMFI3vT9HYwgzRM1bxEhBgMFYIqShXjJ-j5Lu8cw_UCKXeTSwbGUXsoL-_aRrJalr7-X5b-Ci4ULfLZP_IqLNGXb3SUtFQqrmpZ1IudMjGkVDrazdFNOt4U1P2ZZHeYZLFP9xmXfgJ7kH9HV8CTHfii4xbiAezv_wbAk6K1</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Dallérac, G.M.</creator><creator>Vatsavayai, S.C.</creator><creator>Cummings, D.M.</creator><creator>Milnerwood, A.J.</creator><creator>Peddie, C.J.</creator><creator>Evans, K.A.</creator><creator>Walters, S.W.</creator><creator>Rezaie, P.</creator><creator>Hirst, M.C.</creator><creator>Murphy, K.P.S.J.</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>201105</creationdate><title>Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation</title><author>Dallérac, G.M. ; Vatsavayai, S.C. ; Cummings, D.M. ; Milnerwood, A.J. ; Peddie, C.J. ; Evans, K.A. ; Walters, S.W. ; Rezaie, P. ; Hirst, M.C. ; Murphy, K.P.S.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-53d33d220bd117d0a184a87b30ceefdec6bc7bdfcf6c2943dec55fc1551911923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>Dopamine Agonists - pharmacology</topic><topic>Electrophysiology</topic><topic>Female</topic><topic>Huntington Disease - physiopathology</topic><topic>Immunohistochemistry</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Organ Culture Techniques</topic><topic>Original Paper</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - physiopathology</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dallérac, G.M.</creatorcontrib><creatorcontrib>Vatsavayai, S.C.</creatorcontrib><creatorcontrib>Cummings, D.M.</creatorcontrib><creatorcontrib>Milnerwood, A.J.</creatorcontrib><creatorcontrib>Peddie, C.J.</creatorcontrib><creatorcontrib>Evans, K.A.</creatorcontrib><creatorcontrib>Walters, S.W.</creatorcontrib><creatorcontrib>Rezaie, P.</creatorcontrib><creatorcontrib>Hirst, M.C.</creatorcontrib><creatorcontrib>Murphy, K.P.S.J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neuro-degenerative diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dallérac, G.M.</au><au>Vatsavayai, S.C.</au><au>Cummings, D.M.</au><au>Milnerwood, A.J.</au><au>Peddie, C.J.</au><au>Evans, K.A.</au><au>Walters, S.W.</au><au>Rezaie, P.</au><au>Hirst, M.C.</au><au>Murphy, K.P.S.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation</atitle><jtitle>Neuro-degenerative diseases</jtitle><addtitle>Neurodegener Dis</addtitle><date>2011-05</date><risdate>2011</risdate><volume>8</volume><issue>4</issue><spage>230</spage><epage>239</epage><pages>230-239</pages><issn>1660-2854</issn><eissn>1660-2862</eissn><abstract>Background: The introduction of gene testing for Huntington’s disease (HD) has enabled the neuropsychiatric and cognitive profiling of human gene carriers prior to the onset of overt motor and cognitive symptoms. Such studies reveal an early decline in working memory and executive function, altered EEG and a loss of striatal dopamine receptors. Working memory is processed in the prefrontal cortex and modulated by extrinsic dopaminergic inputs. Objective: We sought to study excitatory synaptic function and plasticity in the medial prefrontal cortex of mouse models of HD. Methods: We have used 2 mouse models of HD, carrying 89 and 116 CAG repeats (corresponding to a preclinical and symptomatic state, respectively) and performed electrophysiological field recording in coronal slices of the medial prefrontal cortex. Results: We report that short-term synaptic plasticity and long-term potentiation (LTP) are impaired and that the severity of impairment is correlated with the size of the CAG repeat. Remarkably, the deficits in LTP and short-term plasticity are reversed in the presence of a D 1 dopamine receptor agonist (SKF38393). Conclusion: In a previous study, we demonstrated that a deficit in long-term depression (LTD) in the perirhinal cortex could also be reversed by a dopamine agonist. These and our current data indicate that inadequate dopaminergic modulation of cortical synaptic function is an early event in HD and may provide a route for the alleviation of cognitive dysfunction.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>21282937</pmid><doi>10.1159/000322540</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-2854 |
ispartof | Neuro-degenerative diseases, 2011-05, Vol.8 (4), p.230-239 |
issn | 1660-2854 1660-2862 |
language | eng |
recordid | cdi_karger_primary_322540 |
source | Karger Journals; MEDLINE; Alma/SFX Local Collection |
subjects | Animals Disease Models, Animal Dopamine Agonists - pharmacology Electrophysiology Female Huntington Disease - physiopathology Immunohistochemistry Long-Term Potentiation - drug effects Long-Term Potentiation - physiology Male Mice Mice, Transgenic Organ Culture Techniques Original Paper Prefrontal Cortex - drug effects Prefrontal Cortex - physiopathology Receptors, Dopamine D1 - metabolism Synaptic Transmission - physiology |
title | Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_karge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20Long-Term%20Potentiation%20in%20the%20Prefrontal%20Cortex%20of%20Huntington%E2%80%99s%20Disease%20Mouse%20Models:%20Rescue%20by%20D1%20Dopamine%20Receptor%20Activation&rft.jtitle=Neuro-degenerative%20diseases&rft.au=Dall%C3%A9rac,%20G.M.&rft.date=2011-05&rft.volume=8&rft.issue=4&rft.spage=230&rft.epage=239&rft.pages=230-239&rft.issn=1660-2854&rft.eissn=1660-2862&rft_id=info:doi/10.1159/000322540&rft_dat=%3Cproquest_karge%3E866053591%3C/proquest_karge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081693946&rft_id=info:pmid/21282937&rfr_iscdi=true |