Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation

Background: The introduction of gene testing for Huntington’s disease (HD) has enabled the neuropsychiatric and cognitive profiling of human gene carriers prior to the onset of overt motor and cognitive symptoms. Such studies reveal an early decline in working memory and executive function, altered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-degenerative diseases 2011-05, Vol.8 (4), p.230-239
Hauptverfasser: Dallérac, G.M., Vatsavayai, S.C., Cummings, D.M., Milnerwood, A.J., Peddie, C.J., Evans, K.A., Walters, S.W., Rezaie, P., Hirst, M.C., Murphy, K.P.S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 4
container_start_page 230
container_title Neuro-degenerative diseases
container_volume 8
creator Dallérac, G.M.
Vatsavayai, S.C.
Cummings, D.M.
Milnerwood, A.J.
Peddie, C.J.
Evans, K.A.
Walters, S.W.
Rezaie, P.
Hirst, M.C.
Murphy, K.P.S.J.
description Background: The introduction of gene testing for Huntington’s disease (HD) has enabled the neuropsychiatric and cognitive profiling of human gene carriers prior to the onset of overt motor and cognitive symptoms. Such studies reveal an early decline in working memory and executive function, altered EEG and a loss of striatal dopamine receptors. Working memory is processed in the prefrontal cortex and modulated by extrinsic dopaminergic inputs. Objective: We sought to study excitatory synaptic function and plasticity in the medial prefrontal cortex of mouse models of HD. Methods: We have used 2 mouse models of HD, carrying 89 and 116 CAG repeats (corresponding to a preclinical and symptomatic state, respectively) and performed electrophysiological field recording in coronal slices of the medial prefrontal cortex. Results: We report that short-term synaptic plasticity and long-term potentiation (LTP) are impaired and that the severity of impairment is correlated with the size of the CAG repeat. Remarkably, the deficits in LTP and short-term plasticity are reversed in the presence of a D 1 dopamine receptor agonist (SKF38393). Conclusion: In a previous study, we demonstrated that a deficit in long-term depression (LTD) in the perirhinal cortex could also be reversed by a dopamine agonist. These and our current data indicate that inadequate dopaminergic modulation of cortical synaptic function is an early event in HD and may provide a route for the alleviation of cognitive dysfunction.
doi_str_mv 10.1159/000322540
format Article
fullrecord <record><control><sourceid>proquest_karge</sourceid><recordid>TN_cdi_karger_primary_322540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>866053591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-53d33d220bd117d0a184a87b30ceefdec6bc7bdfcf6c2943dec55fc1551911923</originalsourceid><addsrcrecordid>eNqF0c1u1DAQAGALgWgpHLgjZIkD4hDwT-zE3KpdoJUWUaFyjhx7srgkdmo7iN448wa8Hk-C6S574MLFtkafZ-wZhB5T8pJSoV4RQjhjoiZ30DGVklSslezu4SzqI_QgpStCmGoUvY-OGGUtU7w5Rj_Op1m7CBZvgt9WlxAnfBEy-Ox0dsFj53H-DPgiwhCDz3rEqxAzfMNhwGdLYX6bg__1_WfCa5dAJ8Dvw3K7WhjTa_wRklkA9zd4TfE6zHpyHkrUwJxDxKcmu6-3pR6ie4MeEzza7yfo09s3l6uzavPh3fnqdFMZXstcCW45t4yR3lLaWKJpW-u26TkxAIMFI3vT9HYwgzRM1bxEhBgMFYIqShXjJ-j5Lu8cw_UCKXeTSwbGUXsoL-_aRrJalr7-X5b-Ci4ULfLZP_IqLNGXb3SUtFQqrmpZ1IudMjGkVDrazdFNOt4U1P2ZZHeYZLFP9xmXfgJ7kH9HV8CTHfii4xbiAezv_wbAk6K1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081693946</pqid></control><display><type>article</type><title>Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation</title><source>Karger Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Dallérac, G.M. ; Vatsavayai, S.C. ; Cummings, D.M. ; Milnerwood, A.J. ; Peddie, C.J. ; Evans, K.A. ; Walters, S.W. ; Rezaie, P. ; Hirst, M.C. ; Murphy, K.P.S.J.</creator><creatorcontrib>Dallérac, G.M. ; Vatsavayai, S.C. ; Cummings, D.M. ; Milnerwood, A.J. ; Peddie, C.J. ; Evans, K.A. ; Walters, S.W. ; Rezaie, P. ; Hirst, M.C. ; Murphy, K.P.S.J.</creatorcontrib><description>Background: The introduction of gene testing for Huntington’s disease (HD) has enabled the neuropsychiatric and cognitive profiling of human gene carriers prior to the onset of overt motor and cognitive symptoms. Such studies reveal an early decline in working memory and executive function, altered EEG and a loss of striatal dopamine receptors. Working memory is processed in the prefrontal cortex and modulated by extrinsic dopaminergic inputs. Objective: We sought to study excitatory synaptic function and plasticity in the medial prefrontal cortex of mouse models of HD. Methods: We have used 2 mouse models of HD, carrying 89 and 116 CAG repeats (corresponding to a preclinical and symptomatic state, respectively) and performed electrophysiological field recording in coronal slices of the medial prefrontal cortex. Results: We report that short-term synaptic plasticity and long-term potentiation (LTP) are impaired and that the severity of impairment is correlated with the size of the CAG repeat. Remarkably, the deficits in LTP and short-term plasticity are reversed in the presence of a D 1 dopamine receptor agonist (SKF38393). Conclusion: In a previous study, we demonstrated that a deficit in long-term depression (LTD) in the perirhinal cortex could also be reversed by a dopamine agonist. These and our current data indicate that inadequate dopaminergic modulation of cortical synaptic function is an early event in HD and may provide a route for the alleviation of cognitive dysfunction.</description><identifier>ISSN: 1660-2854</identifier><identifier>EISSN: 1660-2862</identifier><identifier>DOI: 10.1159/000322540</identifier><identifier>PMID: 21282937</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Animals ; Disease Models, Animal ; Dopamine Agonists - pharmacology ; Electrophysiology ; Female ; Huntington Disease - physiopathology ; Immunohistochemistry ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; Male ; Mice ; Mice, Transgenic ; Organ Culture Techniques ; Original Paper ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - physiopathology ; Receptors, Dopamine D1 - metabolism ; Synaptic Transmission - physiology</subject><ispartof>Neuro-degenerative diseases, 2011-05, Vol.8 (4), p.230-239</ispartof><rights>2011 S. Karger AG, Basel</rights><rights>Copyright © 2011 S. Karger AG, Basel.</rights><rights>Copyright (c) 2011 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-53d33d220bd117d0a184a87b30ceefdec6bc7bdfcf6c2943dec55fc1551911923</citedby><cites>FETCH-LOGICAL-c346t-53d33d220bd117d0a184a87b30ceefdec6bc7bdfcf6c2943dec55fc1551911923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2423,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21282937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dallérac, G.M.</creatorcontrib><creatorcontrib>Vatsavayai, S.C.</creatorcontrib><creatorcontrib>Cummings, D.M.</creatorcontrib><creatorcontrib>Milnerwood, A.J.</creatorcontrib><creatorcontrib>Peddie, C.J.</creatorcontrib><creatorcontrib>Evans, K.A.</creatorcontrib><creatorcontrib>Walters, S.W.</creatorcontrib><creatorcontrib>Rezaie, P.</creatorcontrib><creatorcontrib>Hirst, M.C.</creatorcontrib><creatorcontrib>Murphy, K.P.S.J.</creatorcontrib><title>Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation</title><title>Neuro-degenerative diseases</title><addtitle>Neurodegener Dis</addtitle><description>Background: The introduction of gene testing for Huntington’s disease (HD) has enabled the neuropsychiatric and cognitive profiling of human gene carriers prior to the onset of overt motor and cognitive symptoms. Such studies reveal an early decline in working memory and executive function, altered EEG and a loss of striatal dopamine receptors. Working memory is processed in the prefrontal cortex and modulated by extrinsic dopaminergic inputs. Objective: We sought to study excitatory synaptic function and plasticity in the medial prefrontal cortex of mouse models of HD. Methods: We have used 2 mouse models of HD, carrying 89 and 116 CAG repeats (corresponding to a preclinical and symptomatic state, respectively) and performed electrophysiological field recording in coronal slices of the medial prefrontal cortex. Results: We report that short-term synaptic plasticity and long-term potentiation (LTP) are impaired and that the severity of impairment is correlated with the size of the CAG repeat. Remarkably, the deficits in LTP and short-term plasticity are reversed in the presence of a D 1 dopamine receptor agonist (SKF38393). Conclusion: In a previous study, we demonstrated that a deficit in long-term depression (LTD) in the perirhinal cortex could also be reversed by a dopamine agonist. These and our current data indicate that inadequate dopaminergic modulation of cortical synaptic function is an early event in HD and may provide a route for the alleviation of cognitive dysfunction.</description><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>Dopamine Agonists - pharmacology</subject><subject>Electrophysiology</subject><subject>Female</subject><subject>Huntington Disease - physiopathology</subject><subject>Immunohistochemistry</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Organ Culture Techniques</subject><subject>Original Paper</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - physiopathology</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Synaptic Transmission - physiology</subject><issn>1660-2854</issn><issn>1660-2862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0c1u1DAQAGALgWgpHLgjZIkD4hDwT-zE3KpdoJUWUaFyjhx7srgkdmo7iN448wa8Hk-C6S574MLFtkafZ-wZhB5T8pJSoV4RQjhjoiZ30DGVklSslezu4SzqI_QgpStCmGoUvY-OGGUtU7w5Rj_Op1m7CBZvgt9WlxAnfBEy-Ox0dsFj53H-DPgiwhCDz3rEqxAzfMNhwGdLYX6bg__1_WfCa5dAJ8Dvw3K7WhjTa_wRklkA9zd4TfE6zHpyHkrUwJxDxKcmu6-3pR6ie4MeEzza7yfo09s3l6uzavPh3fnqdFMZXstcCW45t4yR3lLaWKJpW-u26TkxAIMFI3vT9HYwgzRM1bxEhBgMFYIqShXjJ-j5Lu8cw_UCKXeTSwbGUXsoL-_aRrJalr7-X5b-Ci4ULfLZP_IqLNGXb3SUtFQqrmpZ1IudMjGkVDrazdFNOt4U1P2ZZHeYZLFP9xmXfgJ7kH9HV8CTHfii4xbiAezv_wbAk6K1</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Dallérac, G.M.</creator><creator>Vatsavayai, S.C.</creator><creator>Cummings, D.M.</creator><creator>Milnerwood, A.J.</creator><creator>Peddie, C.J.</creator><creator>Evans, K.A.</creator><creator>Walters, S.W.</creator><creator>Rezaie, P.</creator><creator>Hirst, M.C.</creator><creator>Murphy, K.P.S.J.</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>201105</creationdate><title>Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation</title><author>Dallérac, G.M. ; Vatsavayai, S.C. ; Cummings, D.M. ; Milnerwood, A.J. ; Peddie, C.J. ; Evans, K.A. ; Walters, S.W. ; Rezaie, P. ; Hirst, M.C. ; Murphy, K.P.S.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-53d33d220bd117d0a184a87b30ceefdec6bc7bdfcf6c2943dec55fc1551911923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>Dopamine Agonists - pharmacology</topic><topic>Electrophysiology</topic><topic>Female</topic><topic>Huntington Disease - physiopathology</topic><topic>Immunohistochemistry</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Organ Culture Techniques</topic><topic>Original Paper</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - physiopathology</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dallérac, G.M.</creatorcontrib><creatorcontrib>Vatsavayai, S.C.</creatorcontrib><creatorcontrib>Cummings, D.M.</creatorcontrib><creatorcontrib>Milnerwood, A.J.</creatorcontrib><creatorcontrib>Peddie, C.J.</creatorcontrib><creatorcontrib>Evans, K.A.</creatorcontrib><creatorcontrib>Walters, S.W.</creatorcontrib><creatorcontrib>Rezaie, P.</creatorcontrib><creatorcontrib>Hirst, M.C.</creatorcontrib><creatorcontrib>Murphy, K.P.S.J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neuro-degenerative diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dallérac, G.M.</au><au>Vatsavayai, S.C.</au><au>Cummings, D.M.</au><au>Milnerwood, A.J.</au><au>Peddie, C.J.</au><au>Evans, K.A.</au><au>Walters, S.W.</au><au>Rezaie, P.</au><au>Hirst, M.C.</au><au>Murphy, K.P.S.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation</atitle><jtitle>Neuro-degenerative diseases</jtitle><addtitle>Neurodegener Dis</addtitle><date>2011-05</date><risdate>2011</risdate><volume>8</volume><issue>4</issue><spage>230</spage><epage>239</epage><pages>230-239</pages><issn>1660-2854</issn><eissn>1660-2862</eissn><abstract>Background: The introduction of gene testing for Huntington’s disease (HD) has enabled the neuropsychiatric and cognitive profiling of human gene carriers prior to the onset of overt motor and cognitive symptoms. Such studies reveal an early decline in working memory and executive function, altered EEG and a loss of striatal dopamine receptors. Working memory is processed in the prefrontal cortex and modulated by extrinsic dopaminergic inputs. Objective: We sought to study excitatory synaptic function and plasticity in the medial prefrontal cortex of mouse models of HD. Methods: We have used 2 mouse models of HD, carrying 89 and 116 CAG repeats (corresponding to a preclinical and symptomatic state, respectively) and performed electrophysiological field recording in coronal slices of the medial prefrontal cortex. Results: We report that short-term synaptic plasticity and long-term potentiation (LTP) are impaired and that the severity of impairment is correlated with the size of the CAG repeat. Remarkably, the deficits in LTP and short-term plasticity are reversed in the presence of a D 1 dopamine receptor agonist (SKF38393). Conclusion: In a previous study, we demonstrated that a deficit in long-term depression (LTD) in the perirhinal cortex could also be reversed by a dopamine agonist. These and our current data indicate that inadequate dopaminergic modulation of cortical synaptic function is an early event in HD and may provide a route for the alleviation of cognitive dysfunction.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>21282937</pmid><doi>10.1159/000322540</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-2854
ispartof Neuro-degenerative diseases, 2011-05, Vol.8 (4), p.230-239
issn 1660-2854
1660-2862
language eng
recordid cdi_karger_primary_322540
source Karger Journals; MEDLINE; Alma/SFX Local Collection
subjects Animals
Disease Models, Animal
Dopamine Agonists - pharmacology
Electrophysiology
Female
Huntington Disease - physiopathology
Immunohistochemistry
Long-Term Potentiation - drug effects
Long-Term Potentiation - physiology
Male
Mice
Mice, Transgenic
Organ Culture Techniques
Original Paper
Prefrontal Cortex - drug effects
Prefrontal Cortex - physiopathology
Receptors, Dopamine D1 - metabolism
Synaptic Transmission - physiology
title Impaired Long-Term Potentiation in the Prefrontal Cortex of Huntington’s Disease Mouse Models: Rescue by D1 Dopamine Receptor Activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_karge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20Long-Term%20Potentiation%20in%20the%20Prefrontal%20Cortex%20of%20Huntington%E2%80%99s%20Disease%20Mouse%20Models:%20Rescue%20by%20D1%20Dopamine%20Receptor%20Activation&rft.jtitle=Neuro-degenerative%20diseases&rft.au=Dall%C3%A9rac,%20G.M.&rft.date=2011-05&rft.volume=8&rft.issue=4&rft.spage=230&rft.epage=239&rft.pages=230-239&rft.issn=1660-2854&rft.eissn=1660-2862&rft_id=info:doi/10.1159/000322540&rft_dat=%3Cproquest_karge%3E866053591%3C/proquest_karge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081693946&rft_id=info:pmid/21282937&rfr_iscdi=true