Can a Fly Ride a Bicycle? [and Discussion]

In humans visual flow field information is available to many motor output programs enabling them to guide the whole organism. This basic organization still constitutes a major challenge for any theory of orientation. Studies of the fly Drosphila melanogaster during the past 10 years have shown that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 1992-09, Vol.337 (1281), p.261-269
Hauptverfasser: Wolf, Reinhard, Voss, Andreas, Hein, Sigrid, Heisenberg, Martin, Sullivan, G. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue 1281
container_start_page 261
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 337
creator Wolf, Reinhard
Voss, Andreas
Hein, Sigrid
Heisenberg, Martin
Sullivan, G. D.
description In humans visual flow field information is available to many motor output programs enabling them to guide the whole organism. This basic organization still constitutes a major challenge for any theory of orientation. Studies of the fly Drosphila melanogaster during the past 10 years have shown that in the lower animals sensory-motor control has a similar degree of flexibility. In the flight simulator the tethered fly adjusts the strength of its motor commands to their efficacy. It can stabilize the panorama against rotations not only by yaw torque but also by thrust. It learns to invert its flight manoeuvres in response to positive feedback in order to stabilize a stripe in the frontal visual field. In the present report we demonstrate that Drosophila is able to use the force of its legs to stabilize the panorama irrespective of the polarity of the feedback provided experimentally. All these behavioural performances have a common functional organization with the following properties: (i) the system has a desired state from which the actual state may deviate; (ii) to reach the desired state the system randomly activates a range of motor programs; (iii) the system compares efference copies of the motor programs with those sensory inputs which represent the deviation from the desired state; and (iv) if a significant correlation is detected for a certain motor program, this is used to shift the sensory input into the direction of the desired state. It is proposed that for organisms with more than one motor output this is the basic scheme of sensory-motor coordination.
doi_str_mv 10.1098/rstb.1992.0104
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_jstor_primary_57058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>57058</jstor_id><sourcerecordid>57058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-d344566a7bff68733a66f57cd2716c08fcec35a9c3428f4fe7e75d8fb725cf703</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoOD62Llx1LXS8aZ5diY6OCoLgYyUSOmmiGWo7JB2l_nrTjogiusoN95zvnoPQHoYxhlwe-tDOxjjPszFgoGtohKnAaZYLWEcjyHmWSkr4JtoKYQ4AORN0hA4mRZ0UybTqkhtXmjieON3pyhwlD0VdJqcu6GUIrqkfd9CGLapgdj_fbXQ_PbubXKRX1-eXk-OrVFMi2rQklDLOCzGzlktBSMG5ZUKXmcBcg7TaaMKKXBOaSUutEUawUtqZyJi2Asg2Gq-42jcheGPVwruXwncKg-qbqr6p6puqvmk0hJXBN10M1mhn2k7Nm6Wv41fd3N6dRDG8EiIcziRWIAkGhgmV6t0tBlwvUFGgXAhLowbZzzO_r5L_rv6ZdX_lmoe28V_NmAAm4_JotXx2T89vzhv1gz2gdFO3pm6HrEPKjGNll1WlFqWNBPiX0HSLyPjuJR-iG6yr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Can a Fly Ride a Bicycle? [and Discussion]</title><source>JSTOR</source><creator>Wolf, Reinhard ; Voss, Andreas ; Hein, Sigrid ; Heisenberg, Martin ; Sullivan, G. D.</creator><creatorcontrib>Wolf, Reinhard ; Voss, Andreas ; Hein, Sigrid ; Heisenberg, Martin ; Sullivan, G. D.</creatorcontrib><description>In humans visual flow field information is available to many motor output programs enabling them to guide the whole organism. This basic organization still constitutes a major challenge for any theory of orientation. Studies of the fly Drosphila melanogaster during the past 10 years have shown that in the lower animals sensory-motor control has a similar degree of flexibility. In the flight simulator the tethered fly adjusts the strength of its motor commands to their efficacy. It can stabilize the panorama against rotations not only by yaw torque but also by thrust. It learns to invert its flight manoeuvres in response to positive feedback in order to stabilize a stripe in the frontal visual field. In the present report we demonstrate that Drosophila is able to use the force of its legs to stabilize the panorama irrespective of the polarity of the feedback provided experimentally. All these behavioural performances have a common functional organization with the following properties: (i) the system has a desired state from which the actual state may deviate; (ii) to reach the desired state the system randomly activates a range of motor programs; (iii) the system compares efference copies of the motor programs with those sensory inputs which represent the deviation from the desired state; and (iv) if a significant correlation is detected for a certain motor program, this is used to shift the sensory input into the direction of the desired state. It is proposed that for organisms with more than one motor output this is the basic scheme of sensory-motor coordination.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.1992.0104</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Angular velocity ; Automatic pilots ; Control loops ; Drosophila ; Motor ability ; Panoramas ; Steering ; Stripes ; Torque ; Wolves</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 1992-09, Vol.337 (1281), p.261-269</ispartof><rights>Copyright 1992 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-d344566a7bff68733a66f57cd2716c08fcec35a9c3428f4fe7e75d8fb725cf703</citedby><cites>FETCH-LOGICAL-c437t-d344566a7bff68733a66f57cd2716c08fcec35a9c3428f4fe7e75d8fb725cf703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/57058$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/57058$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Wolf, Reinhard</creatorcontrib><creatorcontrib>Voss, Andreas</creatorcontrib><creatorcontrib>Hein, Sigrid</creatorcontrib><creatorcontrib>Heisenberg, Martin</creatorcontrib><creatorcontrib>Sullivan, G. D.</creatorcontrib><title>Can a Fly Ride a Bicycle? [and Discussion]</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. Lond. B</addtitle><description>In humans visual flow field information is available to many motor output programs enabling them to guide the whole organism. This basic organization still constitutes a major challenge for any theory of orientation. Studies of the fly Drosphila melanogaster during the past 10 years have shown that in the lower animals sensory-motor control has a similar degree of flexibility. In the flight simulator the tethered fly adjusts the strength of its motor commands to their efficacy. It can stabilize the panorama against rotations not only by yaw torque but also by thrust. It learns to invert its flight manoeuvres in response to positive feedback in order to stabilize a stripe in the frontal visual field. In the present report we demonstrate that Drosophila is able to use the force of its legs to stabilize the panorama irrespective of the polarity of the feedback provided experimentally. All these behavioural performances have a common functional organization with the following properties: (i) the system has a desired state from which the actual state may deviate; (ii) to reach the desired state the system randomly activates a range of motor programs; (iii) the system compares efference copies of the motor programs with those sensory inputs which represent the deviation from the desired state; and (iv) if a significant correlation is detected for a certain motor program, this is used to shift the sensory input into the direction of the desired state. It is proposed that for organisms with more than one motor output this is the basic scheme of sensory-motor coordination.</description><subject>Angular velocity</subject><subject>Automatic pilots</subject><subject>Control loops</subject><subject>Drosophila</subject><subject>Motor ability</subject><subject>Panoramas</subject><subject>Steering</subject><subject>Stripes</subject><subject>Torque</subject><subject>Wolves</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoOD62Llx1LXS8aZ5diY6OCoLgYyUSOmmiGWo7JB2l_nrTjogiusoN95zvnoPQHoYxhlwe-tDOxjjPszFgoGtohKnAaZYLWEcjyHmWSkr4JtoKYQ4AORN0hA4mRZ0UybTqkhtXmjieON3pyhwlD0VdJqcu6GUIrqkfd9CGLapgdj_fbXQ_PbubXKRX1-eXk-OrVFMi2rQklDLOCzGzlktBSMG5ZUKXmcBcg7TaaMKKXBOaSUutEUawUtqZyJi2Asg2Gq-42jcheGPVwruXwncKg-qbqr6p6puqvmk0hJXBN10M1mhn2k7Nm6Wv41fd3N6dRDG8EiIcziRWIAkGhgmV6t0tBlwvUFGgXAhLowbZzzO_r5L_rv6ZdX_lmoe28V_NmAAm4_JotXx2T89vzhv1gz2gdFO3pm6HrEPKjGNll1WlFqWNBPiX0HSLyPjuJR-iG6yr</recordid><startdate>19920929</startdate><enddate>19920929</enddate><creator>Wolf, Reinhard</creator><creator>Voss, Andreas</creator><creator>Hein, Sigrid</creator><creator>Heisenberg, Martin</creator><creator>Sullivan, G. D.</creator><general>The Royal Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920929</creationdate><title>Can a Fly Ride a Bicycle? [and Discussion]</title><author>Wolf, Reinhard ; Voss, Andreas ; Hein, Sigrid ; Heisenberg, Martin ; Sullivan, G. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-d344566a7bff68733a66f57cd2716c08fcec35a9c3428f4fe7e75d8fb725cf703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Angular velocity</topic><topic>Automatic pilots</topic><topic>Control loops</topic><topic>Drosophila</topic><topic>Motor ability</topic><topic>Panoramas</topic><topic>Steering</topic><topic>Stripes</topic><topic>Torque</topic><topic>Wolves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Reinhard</creatorcontrib><creatorcontrib>Voss, Andreas</creatorcontrib><creatorcontrib>Hein, Sigrid</creatorcontrib><creatorcontrib>Heisenberg, Martin</creatorcontrib><creatorcontrib>Sullivan, G. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Reinhard</au><au>Voss, Andreas</au><au>Hein, Sigrid</au><au>Heisenberg, Martin</au><au>Sullivan, G. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can a Fly Ride a Bicycle? [and Discussion]</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. B</stitle><date>1992-09-29</date><risdate>1992</risdate><volume>337</volume><issue>1281</issue><spage>261</spage><epage>269</epage><pages>261-269</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>In humans visual flow field information is available to many motor output programs enabling them to guide the whole organism. This basic organization still constitutes a major challenge for any theory of orientation. Studies of the fly Drosphila melanogaster during the past 10 years have shown that in the lower animals sensory-motor control has a similar degree of flexibility. In the flight simulator the tethered fly adjusts the strength of its motor commands to their efficacy. It can stabilize the panorama against rotations not only by yaw torque but also by thrust. It learns to invert its flight manoeuvres in response to positive feedback in order to stabilize a stripe in the frontal visual field. In the present report we demonstrate that Drosophila is able to use the force of its legs to stabilize the panorama irrespective of the polarity of the feedback provided experimentally. All these behavioural performances have a common functional organization with the following properties: (i) the system has a desired state from which the actual state may deviate; (ii) to reach the desired state the system randomly activates a range of motor programs; (iii) the system compares efference copies of the motor programs with those sensory inputs which represent the deviation from the desired state; and (iv) if a significant correlation is detected for a certain motor program, this is used to shift the sensory input into the direction of the desired state. It is proposed that for organisms with more than one motor output this is the basic scheme of sensory-motor coordination.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rstb.1992.0104</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 1992-09, Vol.337 (1281), p.261-269
issn 0962-8436
1471-2970
language eng
recordid cdi_jstor_primary_57058
source JSTOR
subjects Angular velocity
Automatic pilots
Control loops
Drosophila
Motor ability
Panoramas
Steering
Stripes
Torque
Wolves
title Can a Fly Ride a Bicycle? [and Discussion]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20a%20Fly%20Ride%20a%20Bicycle?%20%5Band%20Discussion%5D&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Wolf,%20Reinhard&rft.date=1992-09-29&rft.volume=337&rft.issue=1281&rft.spage=261&rft.epage=269&rft.pages=261-269&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.1992.0104&rft_dat=%3Cjstor_royal%3E57058%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=57058&rfr_iscdi=true