Spatio–temporal dynamics of acoustic cavitation bubble clouds

Bubble clouds forming in an extended volume of liquid in acoustic cavitation show a slowly varying filamentary structure, whose origin is still not completely understood. Experimental observations are reported that provide some characteristics of the phenomenon, such as bubble distributions and soun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 1999-02, Vol.357 (1751), p.313-334
Hauptverfasser: Blake, J. R., Parlitz, U., Mettin, R., Luther, S., Akhatov, I., Voss, M., Lauterborn, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 1751
container_start_page 313
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 357
creator Blake, J. R.
Parlitz, U.
Mettin, R.
Luther, S.
Akhatov, I.
Voss, M.
Lauterborn, W.
description Bubble clouds forming in an extended volume of liquid in acoustic cavitation show a slowly varying filamentary structure, whose origin is still not completely understood. Experimental observations are reported that provide some characteristics of the phenomenon, such as bubble distributions and sound-field measurements. A discussion of relevant physical interactions in bubbly liquids is comprised of wave dynamics, Bjerknes and drag forces, nucleation and coalescence. For describing the structure formation process, continuum and particle approaches are employed. In the framework of the continuum model it is shown that homogeneous bubble distributions are unstable, and regions with high bubble concentration emerge in the course of a self-concentration process. In the particle model, all bubbles are treated as interacting objects that move in the liquid. This approach is complementary to the continuum model. It allows the inclusion of some particular features, for instance Bjerknes forces based on nonlinear bubble oscillations. Both models are discussed and results are compared with experimentally observed patterns.
doi_str_mv 10.1098/rsta.1999.0329
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_55002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>55002</jstor_id><sourcerecordid>55002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-1f55847ef6cfc82ccd77c9a13a7b1041d6d9b438202c830944cdedac806d2ec43</originalsourceid><addsrcrecordid>eNp9kM1u1DAUhSMEEqWwZcEqL5DBv7G9qqqBFqRK_LRU7K4cx6EeMnFkO4VhxTvwhjwJzgRVGiG6sq17vnvOcVE8x2iFkZIvQ0x6hZVSK0SJelAcYSZwRVRNHuY7rVnFEf38uHgS4wYhjGtOjoqTy1En53___JXsdvRB92W7G_TWmVj6rtTGTzE5Uxp969KsHMpmaprelqb3UxufFo863Uf77O95XHw6e321flNdvDt_uz69qEyNVKpwx7lkwna16YwkxrRCGKUx1aLBiOG2blXDqCSIGEmRYsy0ttVGorol1jB6XKyWvSb4GIPtYAxuq8MOMIK5Psz1Ya4Pc_0M0AUIfpeDeeNs2sHGT2HIz_9T8T7q4-XVaRbXt5QLhwXHgCTFSFCJFfxw437dLIAsABfjZGEvO7T51_XF4rqJyYe7ZpwjRPKwWoYuJvv9bqjDV6gFFRyuJYOz9fUH_p68gvmn0KK_cV9uvrlg4aBLfozZfM63T0YxzcjJvcic1vgh2SEdgNBNfQ9j29E_rL_G2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatio–temporal dynamics of acoustic cavitation bubble clouds</title><source>JSTOR Mathematics &amp; Statistics</source><creator>Blake, J. R. ; Parlitz, U. ; Mettin, R. ; Luther, S. ; Akhatov, I. ; Voss, M. ; Lauterborn, W.</creator><contributor>Blake, J. R.</contributor><creatorcontrib>Blake, J. R. ; Parlitz, U. ; Mettin, R. ; Luther, S. ; Akhatov, I. ; Voss, M. ; Lauterborn, W. ; Blake, J. R.</creatorcontrib><description>Bubble clouds forming in an extended volume of liquid in acoustic cavitation show a slowly varying filamentary structure, whose origin is still not completely understood. Experimental observations are reported that provide some characteristics of the phenomenon, such as bubble distributions and sound-field measurements. A discussion of relevant physical interactions in bubbly liquids is comprised of wave dynamics, Bjerknes and drag forces, nucleation and coalescence. For describing the structure formation process, continuum and particle approaches are employed. In the framework of the continuum model it is shown that homogeneous bubble distributions are unstable, and regions with high bubble concentration emerge in the course of a self-concentration process. In the particle model, all bubbles are treated as interacting objects that move in the liquid. This approach is complementary to the continuum model. It allows the inclusion of some particular features, for instance Bjerknes forces based on nonlinear bubble oscillations. Both models are discussed and results are compared with experimentally observed patterns.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.1999.0329</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Amplitude ; Antinodes ; Bjerknes Forces ; Bubbles ; Cavitation flow ; Chaotic Dynamics ; Continuum modeling ; Liquids ; Nucleation ; Particle Model ; Resonators ; Sound field ; Streaming ; Structure Formation ; Wave Equation</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1999-02, Vol.357 (1751), p.313-334</ispartof><rights>Copyright 1999 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c609t-1f55847ef6cfc82ccd77c9a13a7b1041d6d9b438202c830944cdedac806d2ec43</citedby><cites>FETCH-LOGICAL-c609t-1f55847ef6cfc82ccd77c9a13a7b1041d6d9b438202c830944cdedac806d2ec43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/55002$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/55002$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27901,27902,57996,58229</link.rule.ids></links><search><contributor>Blake, J. R.</contributor><creatorcontrib>Blake, J. R.</creatorcontrib><creatorcontrib>Parlitz, U.</creatorcontrib><creatorcontrib>Mettin, R.</creatorcontrib><creatorcontrib>Luther, S.</creatorcontrib><creatorcontrib>Akhatov, I.</creatorcontrib><creatorcontrib>Voss, M.</creatorcontrib><creatorcontrib>Lauterborn, W.</creatorcontrib><title>Spatio–temporal dynamics of acoustic cavitation bubble clouds</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>Bubble clouds forming in an extended volume of liquid in acoustic cavitation show a slowly varying filamentary structure, whose origin is still not completely understood. Experimental observations are reported that provide some characteristics of the phenomenon, such as bubble distributions and sound-field measurements. A discussion of relevant physical interactions in bubbly liquids is comprised of wave dynamics, Bjerknes and drag forces, nucleation and coalescence. For describing the structure formation process, continuum and particle approaches are employed. In the framework of the continuum model it is shown that homogeneous bubble distributions are unstable, and regions with high bubble concentration emerge in the course of a self-concentration process. In the particle model, all bubbles are treated as interacting objects that move in the liquid. This approach is complementary to the continuum model. It allows the inclusion of some particular features, for instance Bjerknes forces based on nonlinear bubble oscillations. Both models are discussed and results are compared with experimentally observed patterns.</description><subject>Amplitude</subject><subject>Antinodes</subject><subject>Bjerknes Forces</subject><subject>Bubbles</subject><subject>Cavitation flow</subject><subject>Chaotic Dynamics</subject><subject>Continuum modeling</subject><subject>Liquids</subject><subject>Nucleation</subject><subject>Particle Model</subject><subject>Resonators</subject><subject>Sound field</subject><subject>Streaming</subject><subject>Structure Formation</subject><subject>Wave Equation</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1DAUhSMEEqWwZcEqL5DBv7G9qqqBFqRK_LRU7K4cx6EeMnFkO4VhxTvwhjwJzgRVGiG6sq17vnvOcVE8x2iFkZIvQ0x6hZVSK0SJelAcYSZwRVRNHuY7rVnFEf38uHgS4wYhjGtOjoqTy1En53___JXsdvRB92W7G_TWmVj6rtTGTzE5Uxp969KsHMpmaprelqb3UxufFo863Uf77O95XHw6e321flNdvDt_uz69qEyNVKpwx7lkwna16YwkxrRCGKUx1aLBiOG2blXDqCSIGEmRYsy0ttVGorol1jB6XKyWvSb4GIPtYAxuq8MOMIK5Psz1Ya4Pc_0M0AUIfpeDeeNs2sHGT2HIz_9T8T7q4-XVaRbXt5QLhwXHgCTFSFCJFfxw437dLIAsABfjZGEvO7T51_XF4rqJyYe7ZpwjRPKwWoYuJvv9bqjDV6gFFRyuJYOz9fUH_p68gvmn0KK_cV9uvrlg4aBLfozZfM63T0YxzcjJvcic1vgh2SEdgNBNfQ9j29E_rL_G2Q</recordid><startdate>19990215</startdate><enddate>19990215</enddate><creator>Blake, J. R.</creator><creator>Parlitz, U.</creator><creator>Mettin, R.</creator><creator>Luther, S.</creator><creator>Akhatov, I.</creator><creator>Voss, M.</creator><creator>Lauterborn, W.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990215</creationdate><title>Spatio–temporal dynamics of acoustic cavitation bubble clouds</title><author>Blake, J. R. ; Parlitz, U. ; Mettin, R. ; Luther, S. ; Akhatov, I. ; Voss, M. ; Lauterborn, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-1f55847ef6cfc82ccd77c9a13a7b1041d6d9b438202c830944cdedac806d2ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Amplitude</topic><topic>Antinodes</topic><topic>Bjerknes Forces</topic><topic>Bubbles</topic><topic>Cavitation flow</topic><topic>Chaotic Dynamics</topic><topic>Continuum modeling</topic><topic>Liquids</topic><topic>Nucleation</topic><topic>Particle Model</topic><topic>Resonators</topic><topic>Sound field</topic><topic>Streaming</topic><topic>Structure Formation</topic><topic>Wave Equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blake, J. R.</creatorcontrib><creatorcontrib>Parlitz, U.</creatorcontrib><creatorcontrib>Mettin, R.</creatorcontrib><creatorcontrib>Luther, S.</creatorcontrib><creatorcontrib>Akhatov, I.</creatorcontrib><creatorcontrib>Voss, M.</creatorcontrib><creatorcontrib>Lauterborn, W.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blake, J. R.</au><au>Parlitz, U.</au><au>Mettin, R.</au><au>Luther, S.</au><au>Akhatov, I.</au><au>Voss, M.</au><au>Lauterborn, W.</au><au>Blake, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio–temporal dynamics of acoustic cavitation bubble clouds</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>1999-02-15</date><risdate>1999</risdate><volume>357</volume><issue>1751</issue><spage>313</spage><epage>334</epage><pages>313-334</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Bubble clouds forming in an extended volume of liquid in acoustic cavitation show a slowly varying filamentary structure, whose origin is still not completely understood. Experimental observations are reported that provide some characteristics of the phenomenon, such as bubble distributions and sound-field measurements. A discussion of relevant physical interactions in bubbly liquids is comprised of wave dynamics, Bjerknes and drag forces, nucleation and coalescence. For describing the structure formation process, continuum and particle approaches are employed. In the framework of the continuum model it is shown that homogeneous bubble distributions are unstable, and regions with high bubble concentration emerge in the course of a self-concentration process. In the particle model, all bubbles are treated as interacting objects that move in the liquid. This approach is complementary to the continuum model. It allows the inclusion of some particular features, for instance Bjerknes forces based on nonlinear bubble oscillations. Both models are discussed and results are compared with experimentally observed patterns.</abstract><pub>The Royal Society</pub><doi>10.1098/rsta.1999.0329</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1999-02, Vol.357 (1751), p.313-334
issn 1364-503X
1471-2962
language eng
recordid cdi_jstor_primary_55002
source JSTOR Mathematics & Statistics
subjects Amplitude
Antinodes
Bjerknes Forces
Bubbles
Cavitation flow
Chaotic Dynamics
Continuum modeling
Liquids
Nucleation
Particle Model
Resonators
Sound field
Streaming
Structure Formation
Wave Equation
title Spatio–temporal dynamics of acoustic cavitation bubble clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio%E2%80%93temporal%20dynamics%20of%20acoustic%20cavitation%20bubble%20clouds&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Blake,%20J.%20R.&rft.date=1999-02-15&rft.volume=357&rft.issue=1751&rft.spage=313&rft.epage=334&rft.pages=313-334&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.1999.0329&rft_dat=%3Cjstor_cross%3E55002%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=55002&rfr_iscdi=true