Nonlinear Forecasting for the Classification of Natural Time Series

There is a growing trend in the natural sciences to view time series as products of dynamical systems. This viewpoint has proven to be particularly useful in stimulating debate and insight into the nature of the underlying generating mechanisms. Here I review some of the issues concerning the use of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 1994-09, Vol.348 (1688), p.477-495
1. Verfasser: Sugihara, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 1688
container_start_page 477
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 348
creator Sugihara, George
description There is a growing trend in the natural sciences to view time series as products of dynamical systems. This viewpoint has proven to be particularly useful in stimulating debate and insight into the nature of the underlying generating mechanisms. Here I review some of the issues concerning the use of forecasting in the detection of nonlinearities and possible chaos, particularly with regard to stochastic chaos. Moreover, it is shown how recent attempts to measure meaningful Lyapunov exponents for ecological data are fundamentally flawed, and that when observational noise is convolved with process noise, computing Lyapunov exponents for the real system will be difficult. Such problems pave the way for more operational definitions of dynamic complexity (cf. Yao & Tong, this volume). Aside from its use in the characterization of chaos, nonlinear forecasting can be used more broadly in pragmatic classification problems. Here I review a recent example of nonlinear forecasting as it is applied to classify human heart rhythms. In particular, it is shown how forecast nonlinearity can be a good discriminator of the physiological effects of age, and how prediction-decay may discriminate heart-disease. In so doing, I introduce a method for characterizing nonlinearity using `S-maps' and a method for analysing multiple short time series with composite attractors.
doi_str_mv 10.1098/rsta.1994.0106
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_jstor_primary_54223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>54223</jstor_id><sourcerecordid>54223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-3796431b697dbbad89571d726376fcadaf02eb129a491365566cb552015fac1d3</originalsourceid><addsrcrecordid>eNp9UMtqGzEUHUoKdZJuu-hqfmAcXb1mtCrG1G3ApJC4kJ3QaKRYZjwyktzgfn01dgiY0Kykyz2ve4riC6ApINHchJjUFISgUwSIfygmQGuosOD4Iv8JpxVD5PFTcRnjBiEAzvCkmN_5oXeDUaFc-GC0iskNT6X1oUxrU857FaOzTqvk_FB6W96ptA-qL1dua8oHE5yJ18VHq_poPr-8V8XvxffV_Ge1_PXjdj5bVjobp4rUglMCLRd117aqawSroasxJzW3WnXKImxawEJRkeMyxrluGcMImFUaOnJVTE-6OvgYg7FyF9xWhYMEJMcK5FiBHCuQYwWZEE-E4A85mNfOpIPc-H0Y8ijvH1azDEZ_CG0c8KaRqCGAKABl8q_bHeVGgMwA6WLcG3mEndu8dSXvuf4369cTaxOTD6-XMYoxyUt0Wq7d0_rZBSPPtPOwy2JjymM-WteZ8u1dyuiu_ZDMkM6I0u77Xu46S_4Bhmq25Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear Forecasting for the Classification of Natural Time Series</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Sugihara, George</creator><contributor>May, Robert McCredie ; Grenfell, Bryan Thomas ; Tong, H.</contributor><creatorcontrib>Sugihara, George ; May, Robert McCredie ; Grenfell, Bryan Thomas ; Tong, H.</creatorcontrib><description>There is a growing trend in the natural sciences to view time series as products of dynamical systems. This viewpoint has proven to be particularly useful in stimulating debate and insight into the nature of the underlying generating mechanisms. Here I review some of the issues concerning the use of forecasting in the detection of nonlinearities and possible chaos, particularly with regard to stochastic chaos. Moreover, it is shown how recent attempts to measure meaningful Lyapunov exponents for ecological data are fundamentally flawed, and that when observational noise is convolved with process noise, computing Lyapunov exponents for the real system will be difficult. Such problems pave the way for more operational definitions of dynamic complexity (cf. Yao &amp; Tong, this volume). Aside from its use in the characterization of chaos, nonlinear forecasting can be used more broadly in pragmatic classification problems. Here I review a recent example of nonlinear forecasting as it is applied to classify human heart rhythms. In particular, it is shown how forecast nonlinearity can be a good discriminator of the physiological effects of age, and how prediction-decay may discriminate heart-disease. In so doing, I introduce a method for characterizing nonlinearity using `S-maps' and a method for analysing multiple short time series with composite attractors.</description><identifier>ISSN: 1364-503X</identifier><identifier>ISSN: 0962-8428</identifier><identifier>EISSN: 1471-2962</identifier><identifier>EISSN: 2054-0299</identifier><identifier>DOI: 10.1098/rsta.1994.0106</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Chaos theory ; Forecasting models ; Heart diseases ; Noise measurement ; Nonlinearity ; Predictability ; Signal noise ; Skeleton ; Time series ; Time series forecasting</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1994-09, Vol.348 (1688), p.477-495</ispartof><rights>Copyright 1994 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-3796431b697dbbad89571d726376fcadaf02eb129a491365566cb552015fac1d3</citedby><cites>FETCH-LOGICAL-c503t-3796431b697dbbad89571d726376fcadaf02eb129a491365566cb552015fac1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/54223$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/54223$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><contributor>May, Robert McCredie</contributor><contributor>Grenfell, Bryan Thomas</contributor><contributor>Tong, H.</contributor><creatorcontrib>Sugihara, George</creatorcontrib><title>Nonlinear Forecasting for the Classification of Natural Time Series</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><description>There is a growing trend in the natural sciences to view time series as products of dynamical systems. This viewpoint has proven to be particularly useful in stimulating debate and insight into the nature of the underlying generating mechanisms. Here I review some of the issues concerning the use of forecasting in the detection of nonlinearities and possible chaos, particularly with regard to stochastic chaos. Moreover, it is shown how recent attempts to measure meaningful Lyapunov exponents for ecological data are fundamentally flawed, and that when observational noise is convolved with process noise, computing Lyapunov exponents for the real system will be difficult. Such problems pave the way for more operational definitions of dynamic complexity (cf. Yao &amp; Tong, this volume). Aside from its use in the characterization of chaos, nonlinear forecasting can be used more broadly in pragmatic classification problems. Here I review a recent example of nonlinear forecasting as it is applied to classify human heart rhythms. In particular, it is shown how forecast nonlinearity can be a good discriminator of the physiological effects of age, and how prediction-decay may discriminate heart-disease. In so doing, I introduce a method for characterizing nonlinearity using `S-maps' and a method for analysing multiple short time series with composite attractors.</description><subject>Chaos theory</subject><subject>Forecasting models</subject><subject>Heart diseases</subject><subject>Noise measurement</subject><subject>Nonlinearity</subject><subject>Predictability</subject><subject>Signal noise</subject><subject>Skeleton</subject><subject>Time series</subject><subject>Time series forecasting</subject><issn>1364-503X</issn><issn>0962-8428</issn><issn>1471-2962</issn><issn>2054-0299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqGzEUHUoKdZJuu-hqfmAcXb1mtCrG1G3ApJC4kJ3QaKRYZjwyktzgfn01dgiY0Kykyz2ve4riC6ApINHchJjUFISgUwSIfygmQGuosOD4Iv8JpxVD5PFTcRnjBiEAzvCkmN_5oXeDUaFc-GC0iskNT6X1oUxrU857FaOzTqvk_FB6W96ptA-qL1dua8oHE5yJ18VHq_poPr-8V8XvxffV_Ge1_PXjdj5bVjobp4rUglMCLRd117aqawSroasxJzW3WnXKImxawEJRkeMyxrluGcMImFUaOnJVTE-6OvgYg7FyF9xWhYMEJMcK5FiBHCuQYwWZEE-E4A85mNfOpIPc-H0Y8ijvH1azDEZ_CG0c8KaRqCGAKABl8q_bHeVGgMwA6WLcG3mEndu8dSXvuf4369cTaxOTD6-XMYoxyUt0Wq7d0_rZBSPPtPOwy2JjymM-WteZ8u1dyuiu_ZDMkM6I0u77Xu46S_4Bhmq25Q</recordid><startdate>19940915</startdate><enddate>19940915</enddate><creator>Sugihara, George</creator><general>The Royal Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940915</creationdate><title>Nonlinear Forecasting for the Classification of Natural Time Series</title><author>Sugihara, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-3796431b697dbbad89571d726376fcadaf02eb129a491365566cb552015fac1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Chaos theory</topic><topic>Forecasting models</topic><topic>Heart diseases</topic><topic>Noise measurement</topic><topic>Nonlinearity</topic><topic>Predictability</topic><topic>Signal noise</topic><topic>Skeleton</topic><topic>Time series</topic><topic>Time series forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugihara, George</creatorcontrib><collection>CrossRef</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugihara, George</au><au>May, Robert McCredie</au><au>Grenfell, Bryan Thomas</au><au>Tong, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Forecasting for the Classification of Natural Time Series</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. A</stitle><date>1994-09-15</date><risdate>1994</risdate><volume>348</volume><issue>1688</issue><spage>477</spage><epage>495</epage><pages>477-495</pages><issn>1364-503X</issn><issn>0962-8428</issn><eissn>1471-2962</eissn><eissn>2054-0299</eissn><abstract>There is a growing trend in the natural sciences to view time series as products of dynamical systems. This viewpoint has proven to be particularly useful in stimulating debate and insight into the nature of the underlying generating mechanisms. Here I review some of the issues concerning the use of forecasting in the detection of nonlinearities and possible chaos, particularly with regard to stochastic chaos. Moreover, it is shown how recent attempts to measure meaningful Lyapunov exponents for ecological data are fundamentally flawed, and that when observational noise is convolved with process noise, computing Lyapunov exponents for the real system will be difficult. Such problems pave the way for more operational definitions of dynamic complexity (cf. Yao &amp; Tong, this volume). Aside from its use in the characterization of chaos, nonlinear forecasting can be used more broadly in pragmatic classification problems. Here I review a recent example of nonlinear forecasting as it is applied to classify human heart rhythms. In particular, it is shown how forecast nonlinearity can be a good discriminator of the physiological effects of age, and how prediction-decay may discriminate heart-disease. In so doing, I introduce a method for characterizing nonlinearity using `S-maps' and a method for analysing multiple short time series with composite attractors.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rsta.1994.0106</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1994-09, Vol.348 (1688), p.477-495
issn 1364-503X
0962-8428
1471-2962
2054-0299
language eng
recordid cdi_jstor_primary_54223
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Chaos theory
Forecasting models
Heart diseases
Noise measurement
Nonlinearity
Predictability
Signal noise
Skeleton
Time series
Time series forecasting
title Nonlinear Forecasting for the Classification of Natural Time Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Forecasting%20for%20the%20Classification%20of%20Natural%20Time%20Series&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Sugihara,%20George&rft.date=1994-09-15&rft.volume=348&rft.issue=1688&rft.spage=477&rft.epage=495&rft.pages=477-495&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.1994.0106&rft_dat=%3Cjstor_royal%3E54223%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=54223&rfr_iscdi=true