Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system
Superposition principles, both linear and nonlinear, associated with the Moutard transformation are found. On suitable reinterpretation, these constitute an integrable discrete nonlinear system and its associated linear system. Further, it is shown that, in a particular form, this system is an integ...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 1997-02, Vol.453 (1957), p.255-279 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | 1957 |
container_start_page | 255 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 453 |
creator | Nimmo, J. J. C. Schief, W. K. |
description | Superposition principles, both linear and nonlinear, associated with the Moutard transformation are found. On suitable reinterpretation, these constitute an integrable discrete nonlinear system and its associated linear system. Further, it is shown that, in a particular form, this system is an integrable discretization of a (2+1)-dimensional sine-Gordon system. Solutions of the discrete nonlinear system are constructed by means of a discrete analogue of the Moutard transformation. Included in these solutions are discrete analogues of the kink solutions of the continuous system. |
doi_str_mv | 10.1098/rspa.1997.0015 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_53122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>53122</jstor_id><sourcerecordid>53122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-3c27cf91b67bc61bf8039c3b693c7b8b867e828136fd6a0900f63bd91f30eeaa3</originalsourceid><addsrcrecordid>eNp9UsFu1DAUjBBIlMKVAycfQVUWO46dmAuqKmiRWlFR4NCL5Th210s2jvwcyvbEH3DgD_kSnA2qtKroyfZ7M-_NjJxlzwleECzq1wEGtSBCVAuMCXuQ7ZGyInkhSv4w3Skvc4YL8jh7ArDCGAtWV3vZr4txMGHw4KLzPRqC67UbOgNIAXjtVDQtunZxieLSoDM_RhVaFIPqwfqwVhPrDVI9cn00V0E1nUGtAx1MdDfbLvIWKfSyOCCv_vz83bq16SGVVYfA9SaVjn1oEww2EM36afbIqg7Ms3_nfvbl_bvPRyf56cfjD0eHp7lmJY851UWlrSANrxrNSWNrTIWmDRdUV03d1LwydVEn17blCguMLadNK4il2Bil6H62mOfq4AGCsTJZX6uwkQTLKU45xSmnOOUUZyLQmRD8JglL0Zi4kSs_hmQF_s-C-1ifLs4PE5h_Lxl1RLDEqinBJakZkzdu2I6bADIBpAMYjdzCdtfc3fpi3rqC6MOtM0ZJUaRmPjddyvvHbVOFb5JXtGLya11KcslOyGWB5VnCkxm_dFfLaxeM3PGSHkMAtRW4lVawScDbezmTXO3Tj-njDlHasevk0Fr6F6M55Z0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Nimmo, J. J. C. ; Schief, W. K.</creator><creatorcontrib>Nimmo, J. J. C. ; Schief, W. K.</creatorcontrib><description>Superposition principles, both linear and nonlinear, associated with the Moutard transformation are found. On suitable reinterpretation, these constitute an integrable discrete nonlinear system and its associated linear system. Further, it is shown that, in a particular form, this system is an integrable discretization of a (2+1)-dimensional sine-Gordon system. Solutions of the discrete nonlinear system are constructed by means of a discrete analogue of the Moutard transformation. Included in these solutions are discrete analogues of the kink solutions of the continuous system.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.1997.0015</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Coefficients ; Differentials ; Eigenfunctions ; Linear equations ; Linear systems ; Mathematical lattices ; Mathematical transformations ; Mathematics ; Partial differential equations ; Solitons</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 1997-02, Vol.453 (1957), p.255-279</ispartof><rights>Copyright 1997 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-3c27cf91b67bc61bf8039c3b693c7b8b867e828136fd6a0900f63bd91f30eeaa3</citedby><cites>FETCH-LOGICAL-c546t-3c27cf91b67bc61bf8039c3b693c7b8b867e828136fd6a0900f63bd91f30eeaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/53122$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/53122$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Nimmo, J. J. C.</creatorcontrib><creatorcontrib>Schief, W. K.</creatorcontrib><title>Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>Superposition principles, both linear and nonlinear, associated with the Moutard transformation are found. On suitable reinterpretation, these constitute an integrable discrete nonlinear system and its associated linear system. Further, it is shown that, in a particular form, this system is an integrable discretization of a (2+1)-dimensional sine-Gordon system. Solutions of the discrete nonlinear system are constructed by means of a discrete analogue of the Moutard transformation. Included in these solutions are discrete analogues of the kink solutions of the continuous system.</description><subject>Coefficients</subject><subject>Differentials</subject><subject>Eigenfunctions</subject><subject>Linear equations</subject><subject>Linear systems</subject><subject>Mathematical lattices</subject><subject>Mathematical transformations</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Solitons</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp9UsFu1DAUjBBIlMKVAycfQVUWO46dmAuqKmiRWlFR4NCL5Th210s2jvwcyvbEH3DgD_kSnA2qtKroyfZ7M-_NjJxlzwleECzq1wEGtSBCVAuMCXuQ7ZGyInkhSv4w3Skvc4YL8jh7ArDCGAtWV3vZr4txMGHw4KLzPRqC67UbOgNIAXjtVDQtunZxieLSoDM_RhVaFIPqwfqwVhPrDVI9cn00V0E1nUGtAx1MdDfbLvIWKfSyOCCv_vz83bq16SGVVYfA9SaVjn1oEww2EM36afbIqg7Ms3_nfvbl_bvPRyf56cfjD0eHp7lmJY851UWlrSANrxrNSWNrTIWmDRdUV03d1LwydVEn17blCguMLadNK4il2Bil6H62mOfq4AGCsTJZX6uwkQTLKU45xSmnOOUUZyLQmRD8JglL0Zi4kSs_hmQF_s-C-1ifLs4PE5h_Lxl1RLDEqinBJakZkzdu2I6bADIBpAMYjdzCdtfc3fpi3rqC6MOtM0ZJUaRmPjddyvvHbVOFb5JXtGLya11KcslOyGWB5VnCkxm_dFfLaxeM3PGSHkMAtRW4lVawScDbezmTXO3Tj-njDlHasevk0Fr6F6M55Z0</recordid><startdate>19970208</startdate><enddate>19970208</enddate><creator>Nimmo, J. J. C.</creator><creator>Schief, W. K.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970208</creationdate><title>Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system</title><author>Nimmo, J. J. C. ; Schief, W. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-3c27cf91b67bc61bf8039c3b693c7b8b867e828136fd6a0900f63bd91f30eeaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Coefficients</topic><topic>Differentials</topic><topic>Eigenfunctions</topic><topic>Linear equations</topic><topic>Linear systems</topic><topic>Mathematical lattices</topic><topic>Mathematical transformations</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Solitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nimmo, J. J. C.</creatorcontrib><creatorcontrib>Schief, W. K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nimmo, J. J. C.</au><au>Schief, W. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>1997-02-08</date><risdate>1997</risdate><volume>453</volume><issue>1957</issue><spage>255</spage><epage>279</epage><pages>255-279</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Superposition principles, both linear and nonlinear, associated with the Moutard transformation are found. On suitable reinterpretation, these constitute an integrable discrete nonlinear system and its associated linear system. Further, it is shown that, in a particular form, this system is an integrable discretization of a (2+1)-dimensional sine-Gordon system. Solutions of the discrete nonlinear system are constructed by means of a discrete analogue of the Moutard transformation. Included in these solutions are discrete analogues of the kink solutions of the continuous system.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.1997.0015</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 1997-02, Vol.453 (1957), p.255-279 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_jstor_primary_53122 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection |
subjects | Coefficients Differentials Eigenfunctions Linear equations Linear systems Mathematical lattices Mathematical transformations Mathematics Partial differential equations Solitons |
title | Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superposition%20principles%20associated%20with%20the%20Moutard%20transformation:%20an%20integrable%20discretization%20of%20a%20(2+1)%E2%80%93dimensional%20sine%E2%80%93Gordon%20system&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Nimmo,%20J.%20J.%20C.&rft.date=1997-02-08&rft.volume=453&rft.issue=1957&rft.spage=255&rft.epage=279&rft.pages=255-279&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1997.0015&rft_dat=%3Cjstor_cross%3E53122%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=53122&rfr_iscdi=true |