Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system

Superposition principles, both linear and nonlinear, associated with the Moutard transformation are found. On suitable reinterpretation, these constitute an integrable discrete nonlinear system and its associated linear system. Further, it is shown that, in a particular form, this system is an integ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 1997-02, Vol.453 (1957), p.255-279
Hauptverfasser: Nimmo, J. J. C., Schief, W. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 1957
container_start_page 255
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 453
creator Nimmo, J. J. C.
Schief, W. K.
description Superposition principles, both linear and nonlinear, associated with the Moutard transformation are found. On suitable reinterpretation, these constitute an integrable discrete nonlinear system and its associated linear system. Further, it is shown that, in a particular form, this system is an integrable discretization of a (2+1)-dimensional sine-Gordon system. Solutions of the discrete nonlinear system are constructed by means of a discrete analogue of the Moutard transformation. Included in these solutions are discrete analogues of the kink solutions of the continuous system.
doi_str_mv 10.1098/rspa.1997.0015
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_53122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>53122</jstor_id><sourcerecordid>53122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-3c27cf91b67bc61bf8039c3b693c7b8b867e828136fd6a0900f63bd91f30eeaa3</originalsourceid><addsrcrecordid>eNp9UsFu1DAUjBBIlMKVAycfQVUWO46dmAuqKmiRWlFR4NCL5Th210s2jvwcyvbEH3DgD_kSnA2qtKroyfZ7M-_NjJxlzwleECzq1wEGtSBCVAuMCXuQ7ZGyInkhSv4w3Skvc4YL8jh7ArDCGAtWV3vZr4txMGHw4KLzPRqC67UbOgNIAXjtVDQtunZxieLSoDM_RhVaFIPqwfqwVhPrDVI9cn00V0E1nUGtAx1MdDfbLvIWKfSyOCCv_vz83bq16SGVVYfA9SaVjn1oEww2EM36afbIqg7Ms3_nfvbl_bvPRyf56cfjD0eHp7lmJY851UWlrSANrxrNSWNrTIWmDRdUV03d1LwydVEn17blCguMLadNK4il2Bil6H62mOfq4AGCsTJZX6uwkQTLKU45xSmnOOUUZyLQmRD8JglL0Zi4kSs_hmQF_s-C-1ifLs4PE5h_Lxl1RLDEqinBJakZkzdu2I6bADIBpAMYjdzCdtfc3fpi3rqC6MOtM0ZJUaRmPjddyvvHbVOFb5JXtGLya11KcslOyGWB5VnCkxm_dFfLaxeM3PGSHkMAtRW4lVawScDbezmTXO3Tj-njDlHasevk0Fr6F6M55Z0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Nimmo, J. J. C. ; Schief, W. K.</creator><creatorcontrib>Nimmo, J. J. C. ; Schief, W. K.</creatorcontrib><description>Superposition principles, both linear and nonlinear, associated with the Moutard transformation are found. On suitable reinterpretation, these constitute an integrable discrete nonlinear system and its associated linear system. Further, it is shown that, in a particular form, this system is an integrable discretization of a (2+1)-dimensional sine-Gordon system. Solutions of the discrete nonlinear system are constructed by means of a discrete analogue of the Moutard transformation. Included in these solutions are discrete analogues of the kink solutions of the continuous system.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.1997.0015</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Coefficients ; Differentials ; Eigenfunctions ; Linear equations ; Linear systems ; Mathematical lattices ; Mathematical transformations ; Mathematics ; Partial differential equations ; Solitons</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 1997-02, Vol.453 (1957), p.255-279</ispartof><rights>Copyright 1997 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-3c27cf91b67bc61bf8039c3b693c7b8b867e828136fd6a0900f63bd91f30eeaa3</citedby><cites>FETCH-LOGICAL-c546t-3c27cf91b67bc61bf8039c3b693c7b8b867e828136fd6a0900f63bd91f30eeaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/53122$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/53122$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Nimmo, J. J. C.</creatorcontrib><creatorcontrib>Schief, W. K.</creatorcontrib><title>Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>Superposition principles, both linear and nonlinear, associated with the Moutard transformation are found. On suitable reinterpretation, these constitute an integrable discrete nonlinear system and its associated linear system. Further, it is shown that, in a particular form, this system is an integrable discretization of a (2+1)-dimensional sine-Gordon system. Solutions of the discrete nonlinear system are constructed by means of a discrete analogue of the Moutard transformation. Included in these solutions are discrete analogues of the kink solutions of the continuous system.</description><subject>Coefficients</subject><subject>Differentials</subject><subject>Eigenfunctions</subject><subject>Linear equations</subject><subject>Linear systems</subject><subject>Mathematical lattices</subject><subject>Mathematical transformations</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Solitons</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp9UsFu1DAUjBBIlMKVAycfQVUWO46dmAuqKmiRWlFR4NCL5Th210s2jvwcyvbEH3DgD_kSnA2qtKroyfZ7M-_NjJxlzwleECzq1wEGtSBCVAuMCXuQ7ZGyInkhSv4w3Skvc4YL8jh7ArDCGAtWV3vZr4txMGHw4KLzPRqC67UbOgNIAXjtVDQtunZxieLSoDM_RhVaFIPqwfqwVhPrDVI9cn00V0E1nUGtAx1MdDfbLvIWKfSyOCCv_vz83bq16SGVVYfA9SaVjn1oEww2EM36afbIqg7Ms3_nfvbl_bvPRyf56cfjD0eHp7lmJY851UWlrSANrxrNSWNrTIWmDRdUV03d1LwydVEn17blCguMLadNK4il2Bil6H62mOfq4AGCsTJZX6uwkQTLKU45xSmnOOUUZyLQmRD8JglL0Zi4kSs_hmQF_s-C-1ifLs4PE5h_Lxl1RLDEqinBJakZkzdu2I6bADIBpAMYjdzCdtfc3fpi3rqC6MOtM0ZJUaRmPjddyvvHbVOFb5JXtGLya11KcslOyGWB5VnCkxm_dFfLaxeM3PGSHkMAtRW4lVawScDbezmTXO3Tj-njDlHasevk0Fr6F6M55Z0</recordid><startdate>19970208</startdate><enddate>19970208</enddate><creator>Nimmo, J. J. C.</creator><creator>Schief, W. K.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970208</creationdate><title>Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system</title><author>Nimmo, J. J. C. ; Schief, W. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-3c27cf91b67bc61bf8039c3b693c7b8b867e828136fd6a0900f63bd91f30eeaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Coefficients</topic><topic>Differentials</topic><topic>Eigenfunctions</topic><topic>Linear equations</topic><topic>Linear systems</topic><topic>Mathematical lattices</topic><topic>Mathematical transformations</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Solitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nimmo, J. J. C.</creatorcontrib><creatorcontrib>Schief, W. K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nimmo, J. J. C.</au><au>Schief, W. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>1997-02-08</date><risdate>1997</risdate><volume>453</volume><issue>1957</issue><spage>255</spage><epage>279</epage><pages>255-279</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Superposition principles, both linear and nonlinear, associated with the Moutard transformation are found. On suitable reinterpretation, these constitute an integrable discrete nonlinear system and its associated linear system. Further, it is shown that, in a particular form, this system is an integrable discretization of a (2+1)-dimensional sine-Gordon system. Solutions of the discrete nonlinear system are constructed by means of a discrete analogue of the Moutard transformation. Included in these solutions are discrete analogues of the kink solutions of the continuous system.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.1997.0015</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 1997-02, Vol.453 (1957), p.255-279
issn 1364-5021
1471-2946
language eng
recordid cdi_jstor_primary_53122
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection
subjects Coefficients
Differentials
Eigenfunctions
Linear equations
Linear systems
Mathematical lattices
Mathematical transformations
Mathematics
Partial differential equations
Solitons
title Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superposition%20principles%20associated%20with%20the%20Moutard%20transformation:%20an%20integrable%20discretization%20of%20a%20(2+1)%E2%80%93dimensional%20sine%E2%80%93Gordon%20system&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Nimmo,%20J.%20J.%20C.&rft.date=1997-02-08&rft.volume=453&rft.issue=1957&rft.spage=255&rft.epage=279&rft.pages=255-279&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1997.0015&rft_dat=%3Cjstor_cross%3E53122%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=53122&rfr_iscdi=true