Improving Robustness Assessment Quality Via Response Decomposition

Response surface methods have been widely used in robust design for reducing turn-around time and improving quality. That is, from a given set of CAE data (design-of-experiments results), many different robust optimization studies can be performed with different constraints and objectives without la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE transactions 2006-01, Vol.115, p.602-615
Hauptverfasser: Kachnowski, Brian, Fu, Yan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 615
container_issue
container_start_page 602
container_title SAE transactions
container_volume 115
creator Kachnowski, Brian
Fu, Yan
description Response surface methods have been widely used in robust design for reducing turn-around time and improving quality. That is, from a given set of CAE data (design-of-experiments results), many different robust optimization studies can be performed with different constraints and objectives without large, recurring, computation costs. However, due to the highly nonlinear and non-convex nature of occupant injury responses, it is difficult to generate high quality response surface models from them. In this paper, we apply a cross validation technique to estimate the accuracy of response surface models, particularly in the context of robustness assessment. We then decompose selected occupant injury responses into more fundamental signals before fitting surfaces to improve the predictivity of the response surface models. Real-world case studies on an occupant restraint system robust design problem are used to demonstrate the methodology.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_44722375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44722375</jstor_id><sourcerecordid>44722375</sourcerecordid><originalsourceid>FETCH-jstor_primary_447223753</originalsourceid><addsrcrecordid>eNqFybsKwjAUANAgCtbHJwj5gUKaNA2OPtHRIuJWokRJaXJDbir49zq4O53hDEjGpVJ5IUUxJBljyypXorqOyQSxZUwUUvGMrI8uRHhZ_6Q13HpM3iDSFeIXZ3yip153Nr3pxWpaGwzg0dCtuYMLgDZZ8DMyeugOzfznlCz2u_PmkLeYIDYhWqfjuylLxblQUvz7D1l6N78</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving Robustness Assessment Quality Via Response Decomposition</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Kachnowski, Brian ; Fu, Yan</creator><creatorcontrib>Kachnowski, Brian ; Fu, Yan</creatorcontrib><description>Response surface methods have been widely used in robust design for reducing turn-around time and improving quality. That is, from a given set of CAE data (design-of-experiments results), many different robust optimization studies can be performed with different constraints and objectives without large, recurring, computation costs. However, due to the highly nonlinear and non-convex nature of occupant injury responses, it is difficult to generate high quality response surface models from them. In this paper, we apply a cross validation technique to estimate the accuracy of response surface models, particularly in the context of robustness assessment. We then decompose selected occupant injury responses into more fundamental signals before fitting surfaces to improve the predictivity of the response surface models. Real-world case studies on an occupant restraint system robust design problem are used to demonstrate the methodology.</description><identifier>ISSN: 0096-736X</identifier><identifier>EISSN: 2577-1531</identifier><language>eng</language><publisher>SAE International</publisher><ispartof>SAE transactions, 2006-01, Vol.115, p.602-615</ispartof><rights>Copyright 2007 Society of Automotive Engineers, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44722375$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44722375$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,58016,58249</link.rule.ids></links><search><creatorcontrib>Kachnowski, Brian</creatorcontrib><creatorcontrib>Fu, Yan</creatorcontrib><title>Improving Robustness Assessment Quality Via Response Decomposition</title><title>SAE transactions</title><description>Response surface methods have been widely used in robust design for reducing turn-around time and improving quality. That is, from a given set of CAE data (design-of-experiments results), many different robust optimization studies can be performed with different constraints and objectives without large, recurring, computation costs. However, due to the highly nonlinear and non-convex nature of occupant injury responses, it is difficult to generate high quality response surface models from them. In this paper, we apply a cross validation technique to estimate the accuracy of response surface models, particularly in the context of robustness assessment. We then decompose selected occupant injury responses into more fundamental signals before fitting surfaces to improve the predictivity of the response surface models. Real-world case studies on an occupant restraint system robust design problem are used to demonstrate the methodology.</description><issn>0096-736X</issn><issn>2577-1531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFybsKwjAUANAgCtbHJwj5gUKaNA2OPtHRIuJWokRJaXJDbir49zq4O53hDEjGpVJ5IUUxJBljyypXorqOyQSxZUwUUvGMrI8uRHhZ_6Q13HpM3iDSFeIXZ3yip153Nr3pxWpaGwzg0dCtuYMLgDZZ8DMyeugOzfznlCz2u_PmkLeYIDYhWqfjuylLxblQUvz7D1l6N78</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Kachnowski, Brian</creator><creator>Fu, Yan</creator><general>SAE International</general><scope/></search><sort><creationdate>20060101</creationdate><title>Improving Robustness Assessment Quality Via Response Decomposition</title><author>Kachnowski, Brian ; Fu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_447223753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kachnowski, Brian</creatorcontrib><creatorcontrib>Fu, Yan</creatorcontrib><jtitle>SAE transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kachnowski, Brian</au><au>Fu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Robustness Assessment Quality Via Response Decomposition</atitle><jtitle>SAE transactions</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>115</volume><spage>602</spage><epage>615</epage><pages>602-615</pages><issn>0096-736X</issn><eissn>2577-1531</eissn><abstract>Response surface methods have been widely used in robust design for reducing turn-around time and improving quality. That is, from a given set of CAE data (design-of-experiments results), many different robust optimization studies can be performed with different constraints and objectives without large, recurring, computation costs. However, due to the highly nonlinear and non-convex nature of occupant injury responses, it is difficult to generate high quality response surface models from them. In this paper, we apply a cross validation technique to estimate the accuracy of response surface models, particularly in the context of robustness assessment. We then decompose selected occupant injury responses into more fundamental signals before fitting surfaces to improve the predictivity of the response surface models. Real-world case studies on an occupant restraint system robust design problem are used to demonstrate the methodology.</abstract><pub>SAE International</pub></addata></record>
fulltext fulltext
identifier ISSN: 0096-736X
ispartof SAE transactions, 2006-01, Vol.115, p.602-615
issn 0096-736X
2577-1531
language eng
recordid cdi_jstor_primary_44722375
source JSTOR Archive Collection A-Z Listing
title Improving Robustness Assessment Quality Via Response Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Robustness%20Assessment%20Quality%20Via%20Response%20Decomposition&rft.jtitle=SAE%20transactions&rft.au=Kachnowski,%20Brian&rft.date=2006-01-01&rft.volume=115&rft.spage=602&rft.epage=615&rft.pages=602-615&rft.issn=0096-736X&rft.eissn=2577-1531&rft_id=info:doi/&rft_dat=%3Cjstor%3E44722375%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44722375&rfr_iscdi=true