Energy Requirements - Correlation Between Occupant, Bag and Inflator
Part I of this paper discusses a computer model of a hybrid air cushion inflator which models existing systems to a high degree of accuracy. Gas generator size and ballistic properties, stored gas composition, storage pressure, volume, temperature, and receiving tank parameters can be varied to accu...
Gespeichert in:
Veröffentlicht in: | SAE transactions 1972-01, Vol.81, p.1346-1352 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1352 |
---|---|
container_issue | |
container_start_page | 1346 |
container_title | SAE transactions |
container_volume | 81 |
creator | Hamilton, B. K. Young, Craig Talley, Claude P. Chakravarti, K. Finlow, David E. Wright, William H. |
description | Part I of this paper discusses a computer model of a hybrid air cushion inflator which models existing systems to a high degree of accuracy. Gas generator size and ballistic properties, stored gas composition, storage pressure, volume, temperature, and receiving tank parameters can be varied to accurately predict the effects of system changes on inflator performance. In Part II, an approach for analytically obtaining equations of motion for torsos during contact with gas cushions in frontal collisions and subsequent ride-down characteristics is developed. From these equations, calculations of torso "g" forces, cushion pressures and other system parameters can be made. It is then possible to optimize these parameters in terms of desired torso response under a variety of design criteria as a guide to system design and experimental verification. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_44717364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44717364</jstor_id><sourcerecordid>44717364</sourcerecordid><originalsourceid>FETCH-jstor_primary_447173643</originalsourceid><addsrcrecordid>eNqFjr0OgjAYABujifjzCCbfA9ikpUDjCmJ0MiEObqTBDwKBgm2J4e1lcHe64W64BfH8UErKQ8GXxGPsFFEpoueabKxtGBM8lL5HzqlGU02Q4XusDXaonQUKSW8MtsrVvYYY3QdRw70oxkFpd4RYVaD0C266nJve7MiqVK3F_Y9bcrikj-RKGzvbfDB1p8yUB4Hk80Ig_vkvNWI3Aw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy Requirements - Correlation Between Occupant, Bag and Inflator</title><source>Jstor Complete Legacy</source><creator>Hamilton, B. K. ; Young, Craig ; Talley, Claude P. ; Chakravarti, K. ; Finlow, David E. ; Wright, William H.</creator><creatorcontrib>Hamilton, B. K. ; Young, Craig ; Talley, Claude P. ; Chakravarti, K. ; Finlow, David E. ; Wright, William H.</creatorcontrib><description>Part I of this paper discusses a computer model of a hybrid air cushion inflator which models existing systems to a high degree of accuracy. Gas generator size and ballistic properties, stored gas composition, storage pressure, volume, temperature, and receiving tank parameters can be varied to accurately predict the effects of system changes on inflator performance. In Part II, an approach for analytically obtaining equations of motion for torsos during contact with gas cushions in frontal collisions and subsequent ride-down characteristics is developed. From these equations, calculations of torso "g" forces, cushion pressures and other system parameters can be made. It is then possible to optimize these parameters in terms of desired torso response under a variety of design criteria as a guide to system design and experimental verification.</description><identifier>ISSN: 0096-736X</identifier><identifier>EISSN: 2577-1531</identifier><language>eng</language><publisher>SOCIETY OF AUTOMOTIVE ENGINEERS, INC</publisher><ispartof>SAE transactions, 1972-01, Vol.81, p.1346-1352</ispartof><rights>Society of Automotive Engineers, Inc., 1973</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44717364$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44717364$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,57995,58228</link.rule.ids></links><search><creatorcontrib>Hamilton, B. K.</creatorcontrib><creatorcontrib>Young, Craig</creatorcontrib><creatorcontrib>Talley, Claude P.</creatorcontrib><creatorcontrib>Chakravarti, K.</creatorcontrib><creatorcontrib>Finlow, David E.</creatorcontrib><creatorcontrib>Wright, William H.</creatorcontrib><title>Energy Requirements - Correlation Between Occupant, Bag and Inflator</title><title>SAE transactions</title><description>Part I of this paper discusses a computer model of a hybrid air cushion inflator which models existing systems to a high degree of accuracy. Gas generator size and ballistic properties, stored gas composition, storage pressure, volume, temperature, and receiving tank parameters can be varied to accurately predict the effects of system changes on inflator performance. In Part II, an approach for analytically obtaining equations of motion for torsos during contact with gas cushions in frontal collisions and subsequent ride-down characteristics is developed. From these equations, calculations of torso "g" forces, cushion pressures and other system parameters can be made. It is then possible to optimize these parameters in terms of desired torso response under a variety of design criteria as a guide to system design and experimental verification.</description><issn>0096-736X</issn><issn>2577-1531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjr0OgjAYABujifjzCCbfA9ikpUDjCmJ0MiEObqTBDwKBgm2J4e1lcHe64W64BfH8UErKQ8GXxGPsFFEpoueabKxtGBM8lL5HzqlGU02Q4XusDXaonQUKSW8MtsrVvYYY3QdRw70oxkFpd4RYVaD0C266nJve7MiqVK3F_Y9bcrikj-RKGzvbfDB1p8yUB4Hk80Ig_vkvNWI3Aw</recordid><startdate>19720101</startdate><enddate>19720101</enddate><creator>Hamilton, B. K.</creator><creator>Young, Craig</creator><creator>Talley, Claude P.</creator><creator>Chakravarti, K.</creator><creator>Finlow, David E.</creator><creator>Wright, William H.</creator><general>SOCIETY OF AUTOMOTIVE ENGINEERS, INC</general><scope/></search><sort><creationdate>19720101</creationdate><title>Energy Requirements - Correlation Between Occupant, Bag and Inflator</title><author>Hamilton, B. K. ; Young, Craig ; Talley, Claude P. ; Chakravarti, K. ; Finlow, David E. ; Wright, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_447173643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, B. K.</creatorcontrib><creatorcontrib>Young, Craig</creatorcontrib><creatorcontrib>Talley, Claude P.</creatorcontrib><creatorcontrib>Chakravarti, K.</creatorcontrib><creatorcontrib>Finlow, David E.</creatorcontrib><creatorcontrib>Wright, William H.</creatorcontrib><jtitle>SAE transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, B. K.</au><au>Young, Craig</au><au>Talley, Claude P.</au><au>Chakravarti, K.</au><au>Finlow, David E.</au><au>Wright, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Requirements - Correlation Between Occupant, Bag and Inflator</atitle><jtitle>SAE transactions</jtitle><date>1972-01-01</date><risdate>1972</risdate><volume>81</volume><spage>1346</spage><epage>1352</epage><pages>1346-1352</pages><issn>0096-736X</issn><eissn>2577-1531</eissn><abstract>Part I of this paper discusses a computer model of a hybrid air cushion inflator which models existing systems to a high degree of accuracy. Gas generator size and ballistic properties, stored gas composition, storage pressure, volume, temperature, and receiving tank parameters can be varied to accurately predict the effects of system changes on inflator performance. In Part II, an approach for analytically obtaining equations of motion for torsos during contact with gas cushions in frontal collisions and subsequent ride-down characteristics is developed. From these equations, calculations of torso "g" forces, cushion pressures and other system parameters can be made. It is then possible to optimize these parameters in terms of desired torso response under a variety of design criteria as a guide to system design and experimental verification.</abstract><pub>SOCIETY OF AUTOMOTIVE ENGINEERS, INC</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-736X |
ispartof | SAE transactions, 1972-01, Vol.81, p.1346-1352 |
issn | 0096-736X 2577-1531 |
language | eng |
recordid | cdi_jstor_primary_44717364 |
source | Jstor Complete Legacy |
title | Energy Requirements - Correlation Between Occupant, Bag and Inflator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Requirements%20-%20Correlation%20Between%20Occupant,%20Bag%20and%20Inflator&rft.jtitle=SAE%20transactions&rft.au=Hamilton,%20B.%20K.&rft.date=1972-01-01&rft.volume=81&rft.spage=1346&rft.epage=1352&rft.pages=1346-1352&rft.issn=0096-736X&rft.eissn=2577-1531&rft_id=info:doi/&rft_dat=%3Cjstor%3E44717364%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44717364&rfr_iscdi=true |