Energy Requirements - Correlation Between Occupant, Bag and Inflator

Part I of this paper discusses a computer model of a hybrid air cushion inflator which models existing systems to a high degree of accuracy. Gas generator size and ballistic properties, stored gas composition, storage pressure, volume, temperature, and receiving tank parameters can be varied to accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE transactions 1972-01, Vol.81, p.1346-1352
Hauptverfasser: Hamilton, B. K., Young, Craig, Talley, Claude P., Chakravarti, K., Finlow, David E., Wright, William H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1352
container_issue
container_start_page 1346
container_title SAE transactions
container_volume 81
creator Hamilton, B. K.
Young, Craig
Talley, Claude P.
Chakravarti, K.
Finlow, David E.
Wright, William H.
description Part I of this paper discusses a computer model of a hybrid air cushion inflator which models existing systems to a high degree of accuracy. Gas generator size and ballistic properties, stored gas composition, storage pressure, volume, temperature, and receiving tank parameters can be varied to accurately predict the effects of system changes on inflator performance. In Part II, an approach for analytically obtaining equations of motion for torsos during contact with gas cushions in frontal collisions and subsequent ride-down characteristics is developed. From these equations, calculations of torso "g" forces, cushion pressures and other system parameters can be made. It is then possible to optimize these parameters in terms of desired torso response under a variety of design criteria as a guide to system design and experimental verification.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_44717364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44717364</jstor_id><sourcerecordid>44717364</sourcerecordid><originalsourceid>FETCH-jstor_primary_447173643</originalsourceid><addsrcrecordid>eNqFjr0OgjAYABujifjzCCbfA9ikpUDjCmJ0MiEObqTBDwKBgm2J4e1lcHe64W64BfH8UErKQ8GXxGPsFFEpoueabKxtGBM8lL5HzqlGU02Q4XusDXaonQUKSW8MtsrVvYYY3QdRw70oxkFpd4RYVaD0C266nJve7MiqVK3F_Y9bcrikj-RKGzvbfDB1p8yUB4Hk80Ig_vkvNWI3Aw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy Requirements - Correlation Between Occupant, Bag and Inflator</title><source>Jstor Complete Legacy</source><creator>Hamilton, B. K. ; Young, Craig ; Talley, Claude P. ; Chakravarti, K. ; Finlow, David E. ; Wright, William H.</creator><creatorcontrib>Hamilton, B. K. ; Young, Craig ; Talley, Claude P. ; Chakravarti, K. ; Finlow, David E. ; Wright, William H.</creatorcontrib><description>Part I of this paper discusses a computer model of a hybrid air cushion inflator which models existing systems to a high degree of accuracy. Gas generator size and ballistic properties, stored gas composition, storage pressure, volume, temperature, and receiving tank parameters can be varied to accurately predict the effects of system changes on inflator performance. In Part II, an approach for analytically obtaining equations of motion for torsos during contact with gas cushions in frontal collisions and subsequent ride-down characteristics is developed. From these equations, calculations of torso "g" forces, cushion pressures and other system parameters can be made. It is then possible to optimize these parameters in terms of desired torso response under a variety of design criteria as a guide to system design and experimental verification.</description><identifier>ISSN: 0096-736X</identifier><identifier>EISSN: 2577-1531</identifier><language>eng</language><publisher>SOCIETY OF AUTOMOTIVE ENGINEERS, INC</publisher><ispartof>SAE transactions, 1972-01, Vol.81, p.1346-1352</ispartof><rights>Society of Automotive Engineers, Inc., 1973</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44717364$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44717364$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,57995,58228</link.rule.ids></links><search><creatorcontrib>Hamilton, B. K.</creatorcontrib><creatorcontrib>Young, Craig</creatorcontrib><creatorcontrib>Talley, Claude P.</creatorcontrib><creatorcontrib>Chakravarti, K.</creatorcontrib><creatorcontrib>Finlow, David E.</creatorcontrib><creatorcontrib>Wright, William H.</creatorcontrib><title>Energy Requirements - Correlation Between Occupant, Bag and Inflator</title><title>SAE transactions</title><description>Part I of this paper discusses a computer model of a hybrid air cushion inflator which models existing systems to a high degree of accuracy. Gas generator size and ballistic properties, stored gas composition, storage pressure, volume, temperature, and receiving tank parameters can be varied to accurately predict the effects of system changes on inflator performance. In Part II, an approach for analytically obtaining equations of motion for torsos during contact with gas cushions in frontal collisions and subsequent ride-down characteristics is developed. From these equations, calculations of torso "g" forces, cushion pressures and other system parameters can be made. It is then possible to optimize these parameters in terms of desired torso response under a variety of design criteria as a guide to system design and experimental verification.</description><issn>0096-736X</issn><issn>2577-1531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjr0OgjAYABujifjzCCbfA9ikpUDjCmJ0MiEObqTBDwKBgm2J4e1lcHe64W64BfH8UErKQ8GXxGPsFFEpoueabKxtGBM8lL5HzqlGU02Q4XusDXaonQUKSW8MtsrVvYYY3QdRw70oxkFpd4RYVaD0C266nJve7MiqVK3F_Y9bcrikj-RKGzvbfDB1p8yUB4Hk80Ig_vkvNWI3Aw</recordid><startdate>19720101</startdate><enddate>19720101</enddate><creator>Hamilton, B. K.</creator><creator>Young, Craig</creator><creator>Talley, Claude P.</creator><creator>Chakravarti, K.</creator><creator>Finlow, David E.</creator><creator>Wright, William H.</creator><general>SOCIETY OF AUTOMOTIVE ENGINEERS, INC</general><scope/></search><sort><creationdate>19720101</creationdate><title>Energy Requirements - Correlation Between Occupant, Bag and Inflator</title><author>Hamilton, B. K. ; Young, Craig ; Talley, Claude P. ; Chakravarti, K. ; Finlow, David E. ; Wright, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_447173643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, B. K.</creatorcontrib><creatorcontrib>Young, Craig</creatorcontrib><creatorcontrib>Talley, Claude P.</creatorcontrib><creatorcontrib>Chakravarti, K.</creatorcontrib><creatorcontrib>Finlow, David E.</creatorcontrib><creatorcontrib>Wright, William H.</creatorcontrib><jtitle>SAE transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, B. K.</au><au>Young, Craig</au><au>Talley, Claude P.</au><au>Chakravarti, K.</au><au>Finlow, David E.</au><au>Wright, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Requirements - Correlation Between Occupant, Bag and Inflator</atitle><jtitle>SAE transactions</jtitle><date>1972-01-01</date><risdate>1972</risdate><volume>81</volume><spage>1346</spage><epage>1352</epage><pages>1346-1352</pages><issn>0096-736X</issn><eissn>2577-1531</eissn><abstract>Part I of this paper discusses a computer model of a hybrid air cushion inflator which models existing systems to a high degree of accuracy. Gas generator size and ballistic properties, stored gas composition, storage pressure, volume, temperature, and receiving tank parameters can be varied to accurately predict the effects of system changes on inflator performance. In Part II, an approach for analytically obtaining equations of motion for torsos during contact with gas cushions in frontal collisions and subsequent ride-down characteristics is developed. From these equations, calculations of torso "g" forces, cushion pressures and other system parameters can be made. It is then possible to optimize these parameters in terms of desired torso response under a variety of design criteria as a guide to system design and experimental verification.</abstract><pub>SOCIETY OF AUTOMOTIVE ENGINEERS, INC</pub></addata></record>
fulltext fulltext
identifier ISSN: 0096-736X
ispartof SAE transactions, 1972-01, Vol.81, p.1346-1352
issn 0096-736X
2577-1531
language eng
recordid cdi_jstor_primary_44717364
source Jstor Complete Legacy
title Energy Requirements - Correlation Between Occupant, Bag and Inflator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Requirements%20-%20Correlation%20Between%20Occupant,%20Bag%20and%20Inflator&rft.jtitle=SAE%20transactions&rft.au=Hamilton,%20B.%20K.&rft.date=1972-01-01&rft.volume=81&rft.spage=1346&rft.epage=1352&rft.pages=1346-1352&rft.issn=0096-736X&rft.eissn=2577-1531&rft_id=info:doi/&rft_dat=%3Cjstor%3E44717364%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44717364&rfr_iscdi=true