Most Probable Point System Simulation Method
A procedure is presented for obtaining the reliability of series, parallel, and mixed systems. The method, called Most Probable Point System Simulation (MPPSS) is simple, and numerically-based; however, it is more accurate than current analytically-based bounding methods (e.g., bi-modal) and it is c...
Gespeichert in:
Veröffentlicht in: | SAE transactions 2004-01, Vol.113, p.306-312 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312 |
---|---|
container_issue | |
container_start_page | 306 |
container_title | SAE transactions |
container_volume | 113 |
creator | Sues, Robert H. Cesare, Mark A. |
description | A procedure is presented for obtaining the reliability of series, parallel, and mixed systems. The method, called Most Probable Point System Simulation (MPPSS) is simple, and numerically-based; however, it is more accurate than current analytically-based bounding methods (e.g., bi-modal) and it is computationally efficient. In addition, the method can be used to obtain system sensitivity factors, that is, the importance of each random variable to the system reliability. The procedure is demonstrated through an example. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_44699938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44699938</jstor_id><sourcerecordid>44699938</sourcerecordid><originalsourceid>FETCH-jstor_primary_446999383</originalsourceid><addsrcrecordid>eNpjYuA0MjU31zU0NTZkYeA0MLA00zU3NovgYOAqLs4yMDA2NDU34mTQ8c0vLlEIKMpPSkzKSVUIyM_MK1EIriwuSc1VCM7MLc1JLMnMz1PwTS3JyE_hYWBNS8wpTuWF0twMsm6uIc4eulnFJflF8QVFmbmJRZXxJiZmlpaWxhbGhOQB_D4uvg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Most Probable Point System Simulation Method</title><source>Jstor Complete Legacy</source><creator>Sues, Robert H. ; Cesare, Mark A.</creator><creatorcontrib>Sues, Robert H. ; Cesare, Mark A.</creatorcontrib><description>A procedure is presented for obtaining the reliability of series, parallel, and mixed systems. The method, called Most Probable Point System Simulation (MPPSS) is simple, and numerically-based; however, it is more accurate than current analytically-based bounding methods (e.g., bi-modal) and it is computationally efficient. In addition, the method can be used to obtain system sensitivity factors, that is, the importance of each random variable to the system reliability. The procedure is demonstrated through an example.</description><identifier>ISSN: 0096-736X</identifier><identifier>EISSN: 2577-1531</identifier><language>eng</language><publisher>SOCIETY OF AUTOMOTIVE ENGINEERS, INC</publisher><subject>Approximation ; Failure modes ; Mathematical independent variables ; Probabilities ; Probability theory ; Random variables ; Standard deviation ; Structural reliability ; System failures ; System reliability</subject><ispartof>SAE transactions, 2004-01, Vol.113, p.306-312</ispartof><rights>Copyright 2005 Society of Automotive Engineers, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44699938$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44699938$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,57992,58225</link.rule.ids></links><search><creatorcontrib>Sues, Robert H.</creatorcontrib><creatorcontrib>Cesare, Mark A.</creatorcontrib><title>Most Probable Point System Simulation Method</title><title>SAE transactions</title><description>A procedure is presented for obtaining the reliability of series, parallel, and mixed systems. The method, called Most Probable Point System Simulation (MPPSS) is simple, and numerically-based; however, it is more accurate than current analytically-based bounding methods (e.g., bi-modal) and it is computationally efficient. In addition, the method can be used to obtain system sensitivity factors, that is, the importance of each random variable to the system reliability. The procedure is demonstrated through an example.</description><subject>Approximation</subject><subject>Failure modes</subject><subject>Mathematical independent variables</subject><subject>Probabilities</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>Standard deviation</subject><subject>Structural reliability</subject><subject>System failures</subject><subject>System reliability</subject><issn>0096-736X</issn><issn>2577-1531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0MjU31zU0NTZkYeA0MLA00zU3NovgYOAqLs4yMDA2NDU34mTQ8c0vLlEIKMpPSkzKSVUIyM_MK1EIriwuSc1VCM7MLc1JLMnMz1PwTS3JyE_hYWBNS8wpTuWF0twMsm6uIc4eulnFJflF8QVFmbmJRZXxJiZmlpaWxhbGhOQB_D4uvg</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Sues, Robert H.</creator><creator>Cesare, Mark A.</creator><general>SOCIETY OF AUTOMOTIVE ENGINEERS, INC</general><scope/></search><sort><creationdate>20040101</creationdate><title>Most Probable Point System Simulation Method</title><author>Sues, Robert H. ; Cesare, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_446999383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Approximation</topic><topic>Failure modes</topic><topic>Mathematical independent variables</topic><topic>Probabilities</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>Standard deviation</topic><topic>Structural reliability</topic><topic>System failures</topic><topic>System reliability</topic><toplevel>online_resources</toplevel><creatorcontrib>Sues, Robert H.</creatorcontrib><creatorcontrib>Cesare, Mark A.</creatorcontrib><jtitle>SAE transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sues, Robert H.</au><au>Cesare, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Most Probable Point System Simulation Method</atitle><jtitle>SAE transactions</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>113</volume><spage>306</spage><epage>312</epage><pages>306-312</pages><issn>0096-736X</issn><eissn>2577-1531</eissn><abstract>A procedure is presented for obtaining the reliability of series, parallel, and mixed systems. The method, called Most Probable Point System Simulation (MPPSS) is simple, and numerically-based; however, it is more accurate than current analytically-based bounding methods (e.g., bi-modal) and it is computationally efficient. In addition, the method can be used to obtain system sensitivity factors, that is, the importance of each random variable to the system reliability. The procedure is demonstrated through an example.</abstract><pub>SOCIETY OF AUTOMOTIVE ENGINEERS, INC</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-736X |
ispartof | SAE transactions, 2004-01, Vol.113, p.306-312 |
issn | 0096-736X 2577-1531 |
language | eng |
recordid | cdi_jstor_primary_44699938 |
source | Jstor Complete Legacy |
subjects | Approximation Failure modes Mathematical independent variables Probabilities Probability theory Random variables Standard deviation Structural reliability System failures System reliability |
title | Most Probable Point System Simulation Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Most%20Probable%20Point%20System%20Simulation%20Method&rft.jtitle=SAE%20transactions&rft.au=Sues,%20Robert%20H.&rft.date=2004-01-01&rft.volume=113&rft.spage=306&rft.epage=312&rft.pages=306-312&rft.issn=0096-736X&rft.eissn=2577-1531&rft_id=info:doi/&rft_dat=%3Cjstor%3E44699938%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44699938&rfr_iscdi=true |