Causal dissipation for the relativistic dynamics of ideal gases
We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a secondorder system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that m...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2017-05, Vol.473 (2201), p.1-20 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 2201 |
container_start_page | 1 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 473 |
creator | Freistühler, Heinrich Temple, Blake |
description | We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a secondorder system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_44683214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44683214</jstor_id><sourcerecordid>44683214</sourcerecordid><originalsourceid>FETCH-jstor_primary_446832143</originalsourceid><addsrcrecordid>eNpjYeA0NDYz0TU1MDLkYOAqLs4yMDCwNLUw52Swd04sLU7MUUjJLC7OLEgsyczPU0jLL1IoyUhVKErNAQqUZRaXZCYrpFTmJeZmJhcr5KcpZKakArWkJxanFvMwsKYl5hSn8kJpbgZZN9cQZw_drOKS_KL4gqLM3MSiyngTEzMLYyNDE2NC8gAGrzQH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Causal dissipation for the relativistic dynamics of ideal gases</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Freistühler, Heinrich ; Temple, Blake</creator><creatorcontrib>Freistühler, Heinrich ; Temple, Blake</creatorcontrib><description>We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a secondorder system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations.</description><identifier>ISSN: 1364-5021</identifier><language>eng</language><publisher>THE ROYAL SOCIETY</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2017-05, Vol.473 (2201), p.1-20</ispartof><rights>The Royal Society, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44683214$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44683214$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Freistühler, Heinrich</creatorcontrib><creatorcontrib>Temple, Blake</creatorcontrib><title>Causal dissipation for the relativistic dynamics of ideal gases</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a secondorder system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations.</description><issn>1364-5021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0NDYz0TU1MDLkYOAqLs4yMDCwNLUw52Swd04sLU7MUUjJLC7OLEgsyczPU0jLL1IoyUhVKErNAQqUZRaXZCYrpFTmJeZmJhcr5KcpZKakArWkJxanFvMwsKYl5hSn8kJpbgZZN9cQZw_drOKS_KL4gqLM3MSiyngTEzMLYyNDE2NC8gAGrzQH</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Freistühler, Heinrich</creator><creator>Temple, Blake</creator><general>THE ROYAL SOCIETY</general><scope/></search><sort><creationdate>20170501</creationdate><title>Causal dissipation for the relativistic dynamics of ideal gases</title><author>Freistühler, Heinrich ; Temple, Blake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_446832143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freistühler, Heinrich</creatorcontrib><creatorcontrib>Temple, Blake</creatorcontrib><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freistühler, Heinrich</au><au>Temple, Blake</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causal dissipation for the relativistic dynamics of ideal gases</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>473</volume><issue>2201</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1364-5021</issn><abstract>We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a secondorder system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations.</abstract><pub>THE ROYAL SOCIETY</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2017-05, Vol.473 (2201), p.1-20 |
issn | 1364-5021 |
language | eng |
recordid | cdi_jstor_primary_44683214 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection |
title | Causal dissipation for the relativistic dynamics of ideal gases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20dissipation%20for%20the%20relativistic%20dynamics%20of%20ideal%20gases&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Freist%C3%BChler,%20Heinrich&rft.date=2017-05-01&rft.volume=473&rft.issue=2201&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1364-5021&rft_id=info:doi/&rft_dat=%3Cjstor%3E44683214%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44683214&rfr_iscdi=true |