Causal dissipation for the relativistic dynamics of ideal gases

We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a secondorder system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2017-05, Vol.473 (2201), p.1-20
Hauptverfasser: Freistühler, Heinrich, Temple, Blake
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 2201
container_start_page 1
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 473
creator Freistühler, Heinrich
Temple, Blake
description We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a secondorder system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_44683214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44683214</jstor_id><sourcerecordid>44683214</sourcerecordid><originalsourceid>FETCH-jstor_primary_446832143</originalsourceid><addsrcrecordid>eNpjYeA0NDYz0TU1MDLkYOAqLs4yMDCwNLUw52Swd04sLU7MUUjJLC7OLEgsyczPU0jLL1IoyUhVKErNAQqUZRaXZCYrpFTmJeZmJhcr5KcpZKakArWkJxanFvMwsKYl5hSn8kJpbgZZN9cQZw_drOKS_KL4gqLM3MSiyngTEzMLYyNDE2NC8gAGrzQH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Causal dissipation for the relativistic dynamics of ideal gases</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Freistühler, Heinrich ; Temple, Blake</creator><creatorcontrib>Freistühler, Heinrich ; Temple, Blake</creatorcontrib><description>We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a secondorder system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations.</description><identifier>ISSN: 1364-5021</identifier><language>eng</language><publisher>THE ROYAL SOCIETY</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2017-05, Vol.473 (2201), p.1-20</ispartof><rights>The Royal Society, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44683214$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44683214$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Freistühler, Heinrich</creatorcontrib><creatorcontrib>Temple, Blake</creatorcontrib><title>Causal dissipation for the relativistic dynamics of ideal gases</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a secondorder system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations.</description><issn>1364-5021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0NDYz0TU1MDLkYOAqLs4yMDCwNLUw52Swd04sLU7MUUjJLC7OLEgsyczPU0jLL1IoyUhVKErNAQqUZRaXZCYrpFTmJeZmJhcr5KcpZKakArWkJxanFvMwsKYl5hSn8kJpbgZZN9cQZw_drOKS_KL4gqLM3MSiyngTEzMLYyNDE2NC8gAGrzQH</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Freistühler, Heinrich</creator><creator>Temple, Blake</creator><general>THE ROYAL SOCIETY</general><scope/></search><sort><creationdate>20170501</creationdate><title>Causal dissipation for the relativistic dynamics of ideal gases</title><author>Freistühler, Heinrich ; Temple, Blake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_446832143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freistühler, Heinrich</creatorcontrib><creatorcontrib>Temple, Blake</creatorcontrib><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freistühler, Heinrich</au><au>Temple, Blake</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causal dissipation for the relativistic dynamics of ideal gases</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>473</volume><issue>2201</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1364-5021</issn><abstract>We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a secondorder system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations.</abstract><pub>THE ROYAL SOCIETY</pub></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2017-05, Vol.473 (2201), p.1-20
issn 1364-5021
language eng
recordid cdi_jstor_primary_44683214
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection
title Causal dissipation for the relativistic dynamics of ideal gases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20dissipation%20for%20the%20relativistic%20dynamics%20of%20ideal%20gases&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Freist%C3%BChler,%20Heinrich&rft.date=2017-05-01&rft.volume=473&rft.issue=2201&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1364-5021&rft_id=info:doi/&rft_dat=%3Cjstor%3E44683214%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44683214&rfr_iscdi=true