OPTIMAL AND SUBOPTIMAL SOLUTIONS OF A SIMULTANEOUS APPROXIMATION PROBLEM
In this paper simultaneous approximation of a function defined on a normed linear space X and its transform by a continuous bounded (not necessarily linear) operator A defined on a subset V of X with values in another normed linear space Y is considered. Some conditions for an element gϵ V to be an...
Gespeichert in:
Veröffentlicht in: | Bulletin de l'Académie serbe des sciences, Classe des sciences mathématiques et naturelles. Sciences mathématiques Classe des sciences mathématiques et naturelles. Sciences mathématiques, 1986-01 (15), p.17-24 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 15 |
container_start_page | 17 |
container_title | Bulletin de l'Académie serbe des sciences, Classe des sciences mathématiques et naturelles. Sciences mathématiques |
container_volume | |
creator | JANC, M. |
description | In this paper simultaneous approximation of a function defined on a normed linear space X and its transform by a continuous bounded (not necessarily linear) operator A defined on a subset V of X with values in another normed linear space Y is considered. Some conditions for an element gϵ V to be an optimal, resp. ε-optimal solution of this problem are given via duality theory generalizing the known Kolmogorov criterion. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_44095787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44095787</jstor_id><sourcerecordid>44095787</sourcerecordid><originalsourceid>FETCH-jstor_primary_440957873</originalsourceid><addsrcrecordid>eNpjYuA0MjEw0zWwNLBkYeA0MDUz1DU3NjbiYOAqLs4yMDAysTAz42Tw8A8I8fR19FFw9HNRCA51gnGD_X1CQzz9_YIV_N0UHBWCPX1DfUIc_Vz9Q4MVHAMCgvwjgMpAChSAbCcfV18eBta0xJziVF4ozc0g6-Ya4uyhm1Vckl8UX1CUmZtYVBlvYmJgaWpuYW5MSB4AR-wyWg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OPTIMAL AND SUBOPTIMAL SOLUTIONS OF A SIMULTANEOUS APPROXIMATION PROBLEM</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>JANC, M.</creator><creatorcontrib>JANC, M.</creatorcontrib><description>In this paper simultaneous approximation of a function defined on a normed linear space X and its transform by a continuous bounded (not necessarily linear) operator A defined on a subset V of X with values in another normed linear space Y is considered. Some conditions for an element gϵ V to be an optimal, resp. ε-optimal solution of this problem are given via duality theory generalizing the known Kolmogorov criterion.</description><identifier>ISSN: 0561-7332</identifier><identifier>EISSN: 2406-0909</identifier><language>eng</language><publisher>Académie Serbe des Sciences et des Arts</publisher><subject>Approximation ; Mathematical functions ; Mathematics ; Optimal solutions ; Sufficient conditions ; Unit ball</subject><ispartof>Bulletin de l'Académie serbe des sciences, Classe des sciences mathématiques et naturelles. Sciences mathématiques, 1986-01 (15), p.17-24</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44095787$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44095787$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>JANC, M.</creatorcontrib><title>OPTIMAL AND SUBOPTIMAL SOLUTIONS OF A SIMULTANEOUS APPROXIMATION PROBLEM</title><title>Bulletin de l'Académie serbe des sciences, Classe des sciences mathématiques et naturelles. Sciences mathématiques</title><description>In this paper simultaneous approximation of a function defined on a normed linear space X and its transform by a continuous bounded (not necessarily linear) operator A defined on a subset V of X with values in another normed linear space Y is considered. Some conditions for an element gϵ V to be an optimal, resp. ε-optimal solution of this problem are given via duality theory generalizing the known Kolmogorov criterion.</description><subject>Approximation</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Optimal solutions</subject><subject>Sufficient conditions</subject><subject>Unit ball</subject><issn>0561-7332</issn><issn>2406-0909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0MjEw0zWwNLBkYeA0MDUz1DU3NjbiYOAqLs4yMDAysTAz42Tw8A8I8fR19FFw9HNRCA51gnGD_X1CQzz9_YIV_N0UHBWCPX1DfUIc_Vz9Q4MVHAMCgvwjgMpAChSAbCcfV18eBta0xJziVF4ozc0g6-Ya4uyhm1Vckl8UX1CUmZtYVBlvYmJgaWpuYW5MSB4AR-wyWg</recordid><startdate>19860101</startdate><enddate>19860101</enddate><creator>JANC, M.</creator><general>Académie Serbe des Sciences et des Arts</general><scope/></search><sort><creationdate>19860101</creationdate><title>OPTIMAL AND SUBOPTIMAL SOLUTIONS OF A SIMULTANEOUS APPROXIMATION PROBLEM</title><author>JANC, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_440957873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Approximation</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Optimal solutions</topic><topic>Sufficient conditions</topic><topic>Unit ball</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JANC, M.</creatorcontrib><jtitle>Bulletin de l'Académie serbe des sciences, Classe des sciences mathématiques et naturelles. Sciences mathématiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JANC, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL AND SUBOPTIMAL SOLUTIONS OF A SIMULTANEOUS APPROXIMATION PROBLEM</atitle><jtitle>Bulletin de l'Académie serbe des sciences, Classe des sciences mathématiques et naturelles. Sciences mathématiques</jtitle><date>1986-01-01</date><risdate>1986</risdate><issue>15</issue><spage>17</spage><epage>24</epage><pages>17-24</pages><issn>0561-7332</issn><eissn>2406-0909</eissn><abstract>In this paper simultaneous approximation of a function defined on a normed linear space X and its transform by a continuous bounded (not necessarily linear) operator A defined on a subset V of X with values in another normed linear space Y is considered. Some conditions for an element gϵ V to be an optimal, resp. ε-optimal solution of this problem are given via duality theory generalizing the known Kolmogorov criterion.</abstract><pub>Académie Serbe des Sciences et des Arts</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0561-7332 |
ispartof | Bulletin de l'Académie serbe des sciences, Classe des sciences mathématiques et naturelles. Sciences mathématiques, 1986-01 (15), p.17-24 |
issn | 0561-7332 2406-0909 |
language | eng |
recordid | cdi_jstor_primary_44095787 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Approximation Mathematical functions Mathematics Optimal solutions Sufficient conditions Unit ball |
title | OPTIMAL AND SUBOPTIMAL SOLUTIONS OF A SIMULTANEOUS APPROXIMATION PROBLEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20AND%20SUBOPTIMAL%20SOLUTIONS%20OF%20A%20SIMULTANEOUS%20APPROXIMATION%20PROBLEM&rft.jtitle=Bulletin%20de%20l'Acad%C3%A9mie%20serbe%20des%20sciences,%20Classe%20des%20sciences%20math%C3%A9matiques%20et%20naturelles.%20Sciences%20math%C3%A9matiques&rft.au=JANC,%20M.&rft.date=1986-01-01&rft.issue=15&rft.spage=17&rft.epage=24&rft.pages=17-24&rft.issn=0561-7332&rft.eissn=2406-0909&rft_id=info:doi/&rft_dat=%3Cjstor%3E44095787%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44095787&rfr_iscdi=true |