Generalized globally framed f-space-forms
Globally framed f-manifolds are studied from the point of view of the curvature. Generalized globally framed f-space-forms are introduced and the interrelation with generalized Sasakian and generalized complex space-forms is pointed out. Suitable differential equations allow to discuss the constancy...
Gespeichert in:
Veröffentlicht in: | Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 2009-01, Vol.52 (100) (3), p.291-305 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | 3 |
container_start_page | 291 |
container_title | Bulletin mathématiques de la Société des sciences mathématiques de Roumanie |
container_volume | 52 (100) |
creator | Falcitelli, Maria Pastore, Anna Maria |
description | Globally framed f-manifolds are studied from the point of view of the curvature. Generalized globally framed f-space-forms are introduced and the interrelation with generalized Sasakian and generalized complex space-forms is pointed out. Suitable differential equations allow to discuss the constancy of the ψ-sectional curvatures. Further results are stated when the underlying structure is a K-structure or an f.pk-structure of Kenmotsu type. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_43679138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43679138</jstor_id><sourcerecordid>43679138</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-502c2e12d6272207d269e1b2f44243d8a564875258b383fccbd2729f620950323</originalsourceid><addsrcrecordid>eNotjU1rAjEURYNYcLD-hIJbF4GXl4-XWYpYKwhudC2ZSVIcMo4kbvTXO9CuLhfOPXfCKgSjOaBRU1YJRODSkpqxRSkdAAggVEQVW-3CLWSXrq_gl79paFxKz2XMrh975OXu2sDjkPvyyT6iSyUs_nPOzt_b0-aHH467_WZ94J0genAN2GIQ6A3SeEseTR1Eg1EpVNJbp42ypFHbRloZ27bxI1hHg1BrkCjn7OvP25XHkC_3fO1dfl6UNFSLcfIGXJU6fg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized globally framed f-space-forms</title><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Falcitelli, Maria ; Pastore, Anna Maria</creator><creatorcontrib>Falcitelli, Maria ; Pastore, Anna Maria</creatorcontrib><description>Globally framed f-manifolds are studied from the point of view of the curvature. Generalized globally framed f-space-forms are introduced and the interrelation with generalized Sasakian and generalized complex space-forms is pointed out. Suitable differential equations allow to discuss the constancy of the ψ-sectional curvatures. Further results are stated when the underlying structure is a K-structure or an f.pk-structure of Kenmotsu type.</description><identifier>ISSN: 1220-3874</identifier><identifier>EISSN: 2065-0264</identifier><language>eng</language><publisher>Societatea de Ştiinţe Mathematice Din România</publisher><subject>Curvature ; Dot product of vectors ; Eigenvectors ; Geometry ; Mathematical functions ; Pastores ; Riemann manifold ; Tensors ; Vector fields</subject><ispartof>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie, 2009-01, Vol.52 (100) (3), p.291-305</ispartof><rights>Copyright ©2009 SSMR</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43679138$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43679138$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,57996,58229</link.rule.ids></links><search><creatorcontrib>Falcitelli, Maria</creatorcontrib><creatorcontrib>Pastore, Anna Maria</creatorcontrib><title>Generalized globally framed f-space-forms</title><title>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</title><description>Globally framed f-manifolds are studied from the point of view of the curvature. Generalized globally framed f-space-forms are introduced and the interrelation with generalized Sasakian and generalized complex space-forms is pointed out. Suitable differential equations allow to discuss the constancy of the ψ-sectional curvatures. Further results are stated when the underlying structure is a K-structure or an f.pk-structure of Kenmotsu type.</description><subject>Curvature</subject><subject>Dot product of vectors</subject><subject>Eigenvectors</subject><subject>Geometry</subject><subject>Mathematical functions</subject><subject>Pastores</subject><subject>Riemann manifold</subject><subject>Tensors</subject><subject>Vector fields</subject><issn>1220-3874</issn><issn>2065-0264</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjU1rAjEURYNYcLD-hIJbF4GXl4-XWYpYKwhudC2ZSVIcMo4kbvTXO9CuLhfOPXfCKgSjOaBRU1YJRODSkpqxRSkdAAggVEQVW-3CLWSXrq_gl79paFxKz2XMrh975OXu2sDjkPvyyT6iSyUs_nPOzt_b0-aHH467_WZ94J0genAN2GIQ6A3SeEseTR1Eg1EpVNJbp42ypFHbRloZ27bxI1hHg1BrkCjn7OvP25XHkC_3fO1dfl6UNFSLcfIGXJU6fg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Falcitelli, Maria</creator><creator>Pastore, Anna Maria</creator><general>Societatea de Ştiinţe Mathematice Din România</general><scope/></search><sort><creationdate>20090101</creationdate><title>Generalized globally framed f-space-forms</title><author>Falcitelli, Maria ; Pastore, Anna Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-502c2e12d6272207d269e1b2f44243d8a564875258b383fccbd2729f620950323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Curvature</topic><topic>Dot product of vectors</topic><topic>Eigenvectors</topic><topic>Geometry</topic><topic>Mathematical functions</topic><topic>Pastores</topic><topic>Riemann manifold</topic><topic>Tensors</topic><topic>Vector fields</topic><toplevel>online_resources</toplevel><creatorcontrib>Falcitelli, Maria</creatorcontrib><creatorcontrib>Pastore, Anna Maria</creatorcontrib><jtitle>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falcitelli, Maria</au><au>Pastore, Anna Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized globally framed f-space-forms</atitle><jtitle>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>52 (100)</volume><issue>3</issue><spage>291</spage><epage>305</epage><pages>291-305</pages><issn>1220-3874</issn><eissn>2065-0264</eissn><abstract>Globally framed f-manifolds are studied from the point of view of the curvature. Generalized globally framed f-space-forms are introduced and the interrelation with generalized Sasakian and generalized complex space-forms is pointed out. Suitable differential equations allow to discuss the constancy of the ψ-sectional curvatures. Further results are stated when the underlying structure is a K-structure or an f.pk-structure of Kenmotsu type.</abstract><pub>Societatea de Ştiinţe Mathematice Din România</pub><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1220-3874 |
ispartof | Bulletin mathématiques de la Société des sciences mathématiques de Roumanie, 2009-01, Vol.52 (100) (3), p.291-305 |
issn | 1220-3874 2065-0264 |
language | eng |
recordid | cdi_jstor_primary_43679138 |
source | Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Curvature Dot product of vectors Eigenvectors Geometry Mathematical functions Pastores Riemann manifold Tensors Vector fields |
title | Generalized globally framed f-space-forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20globally%20framed%20f-space-forms&rft.jtitle=Bulletin%20math%C3%A9matiques%20de%20la%20Soci%C3%A9t%C3%A9%20des%20sciences%20math%C3%A9matiques%20de%20Roumanie&rft.au=Falcitelli,%20Maria&rft.date=2009-01-01&rft.volume=52%20(100)&rft.issue=3&rft.spage=291&rft.epage=305&rft.pages=291-305&rft.issn=1220-3874&rft.eissn=2065-0264&rft_id=info:doi/&rft_dat=%3Cjstor%3E43679138%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43679138&rfr_iscdi=true |