Application of Global Bertini Theorems

Let k be an infinite field of arbitrary characteristic, (A, M, K) a k-algebra of essentially finite type, with K/k separable and P a local property. We say that LBk(P) holds if: for the generic α = (₁,..., an) ∈ kn ⇒ P(A/xαA) ⊆ P(A) ∩ V(xα) ∩ Up (xα = Σ αixi (x₁,..., xn) = M, Up non empty open subse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 1999-01, Vol.42 (90) (3), p.279-289
1. Verfasser: Rashid, Laila E. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue 3
container_start_page 279
container_title Bulletin mathématiques de la Société des sciences mathématiques de Roumanie
container_volume 42 (90)
creator Rashid, Laila E. M.
description Let k be an infinite field of arbitrary characteristic, (A, M, K) a k-algebra of essentially finite type, with K/k separable and P a local property. We say that LBk(P) holds if: for the generic α = (₁,..., an) ∈ kn ⇒ P(A/xαA) ⊆ P(A) ∩ V(xα) ∩ Up (xα = Σ αixi (x₁,..., xn) = M, Up non empty open subset of SpecA and P (A) = {P ∈ SpecA|ap is P}). We show that: LBk(P) holds ⇒ LBk (GP) holds for the corresponding geometric property (in particular for P = regular, normal, reduced, Rs, LBk(GP) holds). As an application we obtain a Bertini Theorem for hypersurface section of a variety X ⊆ $P_k^n$ concerning the geometric properties.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_43678723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43678723</jstor_id><sourcerecordid>43678723</sourcerecordid><originalsourceid>FETCH-jstor_primary_436787233</originalsourceid><addsrcrecordid>eNpjYuA0MjAz1TUwMjNhYeA0NDIy0DW2MDfhYOAtLs4yMDAwNDA3MjE352RQcywoyMlMTizJzM9TyE9TcM_JT0rMUXBKLSrJzMtUCMlIzS9KzS3mYWBNS8wpTuWF0twMsm6uIc4eulnFJflF8QVFmbmJRZXxJsZm5hbmRsbGhOQB_N0sug</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Global Bertini Theorems</title><source>JSTOR Mathematics &amp; Statistics</source><creator>Rashid, Laila E. M.</creator><creatorcontrib>Rashid, Laila E. M.</creatorcontrib><description>Let k be an infinite field of arbitrary characteristic, (A, M, K) a k-algebra of essentially finite type, with K/k separable and P a local property. We say that LBk(P) holds if: for the generic α = (₁,..., an) ∈ kn ⇒ P(A/xαA) ⊆ P(A) ∩ V(xα) ∩ Up (xα = Σ αixi (x₁,..., xn) = M, Up non empty open subset of SpecA and P (A) = {P ∈ SpecA|ap is P}). We show that: LBk(P) holds ⇒ LBk (GP) holds for the corresponding geometric property (in particular for P = regular, normal, reduced, Rs, LBk(GP) holds). As an application we obtain a Bertini Theorem for hypersurface section of a variety X ⊆ $P_k^n$ concerning the geometric properties.</description><identifier>ISSN: 1220-3874</identifier><identifier>EISSN: 2065-0264</identifier><language>eng</language><publisher>Societatea de Ştiinţe Mathematice Din România</publisher><subject>Algebra ; Geometric properties ; Homomorphisms ; Mathematical rings ; Mathematical theorems ; Polynomials ; Topological spaces ; Transcendentals ; Vertices</subject><ispartof>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie, 1999-01, Vol.42 (90) (3), p.279-289</ispartof><rights>Copyright ©1999 SSMR</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43678723$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43678723$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,57996,58229</link.rule.ids></links><search><creatorcontrib>Rashid, Laila E. M.</creatorcontrib><title>Application of Global Bertini Theorems</title><title>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</title><description>Let k be an infinite field of arbitrary characteristic, (A, M, K) a k-algebra of essentially finite type, with K/k separable and P a local property. We say that LBk(P) holds if: for the generic α = (₁,..., an) ∈ kn ⇒ P(A/xαA) ⊆ P(A) ∩ V(xα) ∩ Up (xα = Σ αixi (x₁,..., xn) = M, Up non empty open subset of SpecA and P (A) = {P ∈ SpecA|ap is P}). We show that: LBk(P) holds ⇒ LBk (GP) holds for the corresponding geometric property (in particular for P = regular, normal, reduced, Rs, LBk(GP) holds). As an application we obtain a Bertini Theorem for hypersurface section of a variety X ⊆ $P_k^n$ concerning the geometric properties.</description><subject>Algebra</subject><subject>Geometric properties</subject><subject>Homomorphisms</subject><subject>Mathematical rings</subject><subject>Mathematical theorems</subject><subject>Polynomials</subject><subject>Topological spaces</subject><subject>Transcendentals</subject><subject>Vertices</subject><issn>1220-3874</issn><issn>2065-0264</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0MjAz1TUwMjNhYeA0NDIy0DW2MDfhYOAtLs4yMDAwNDA3MjE352RQcywoyMlMTizJzM9TyE9TcM_JT0rMUXBKLSrJzMtUCMlIzS9KzS3mYWBNS8wpTuWF0twMsm6uIc4eulnFJflF8QVFmbmJRZXxJsZm5hbmRsbGhOQB_N0sug</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Rashid, Laila E. M.</creator><general>Societatea de Ştiinţe Mathematice Din România</general><scope/></search><sort><creationdate>19990101</creationdate><title>Application of Global Bertini Theorems</title><author>Rashid, Laila E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_436787233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algebra</topic><topic>Geometric properties</topic><topic>Homomorphisms</topic><topic>Mathematical rings</topic><topic>Mathematical theorems</topic><topic>Polynomials</topic><topic>Topological spaces</topic><topic>Transcendentals</topic><topic>Vertices</topic><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Laila E. M.</creatorcontrib><jtitle>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashid, Laila E. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Global Bertini Theorems</atitle><jtitle>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>42 (90)</volume><issue>3</issue><spage>279</spage><epage>289</epage><pages>279-289</pages><issn>1220-3874</issn><eissn>2065-0264</eissn><abstract>Let k be an infinite field of arbitrary characteristic, (A, M, K) a k-algebra of essentially finite type, with K/k separable and P a local property. We say that LBk(P) holds if: for the generic α = (₁,..., an) ∈ kn ⇒ P(A/xαA) ⊆ P(A) ∩ V(xα) ∩ Up (xα = Σ αixi (x₁,..., xn) = M, Up non empty open subset of SpecA and P (A) = {P ∈ SpecA|ap is P}). We show that: LBk(P) holds ⇒ LBk (GP) holds for the corresponding geometric property (in particular for P = regular, normal, reduced, Rs, LBk(GP) holds). As an application we obtain a Bertini Theorem for hypersurface section of a variety X ⊆ $P_k^n$ concerning the geometric properties.</abstract><pub>Societatea de Ştiinţe Mathematice Din România</pub></addata></record>
fulltext fulltext
identifier ISSN: 1220-3874
ispartof Bulletin mathématiques de la Société des sciences mathématiques de Roumanie, 1999-01, Vol.42 (90) (3), p.279-289
issn 1220-3874
2065-0264
language eng
recordid cdi_jstor_primary_43678723
source JSTOR Mathematics & Statistics
subjects Algebra
Geometric properties
Homomorphisms
Mathematical rings
Mathematical theorems
Polynomials
Topological spaces
Transcendentals
Vertices
title Application of Global Bertini Theorems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Global%20Bertini%20Theorems&rft.jtitle=Bulletin%20math%C3%A9matiques%20de%20la%20Soci%C3%A9t%C3%A9%20des%20sciences%20math%C3%A9matiques%20de%20Roumanie&rft.au=Rashid,%20Laila%20E.%20M.&rft.date=1999-01-01&rft.volume=42%20(90)&rft.issue=3&rft.spage=279&rft.epage=289&rft.pages=279-289&rft.issn=1220-3874&rft.eissn=2065-0264&rft_id=info:doi/&rft_dat=%3Cjstor%3E43678723%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43678723&rfr_iscdi=true