Performance of the Bartlett and Bartlett-type corrections in some location-scale nonlinear models
Statistical inference based on the normal model is known to be vulnerable to outliers. Despite this fact and the considerable interest in robust procedures in the statistical literature, most applied statistical analysis continues to be based on the normal model. Our approach is to replace the norma...
Gespeichert in:
Veröffentlicht in: | Brazilian journal of probability and statistics 2003-06, Vol.17 (1), p.75-90 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | Brazilian journal of probability and statistics |
container_volume | 17 |
creator | Lordêlo, Maurício S. Cordeiro, Gauss M. |
description | Statistical inference based on the normal model is known to be vulnerable to outliers. Despite this fact and the considerable interest in robust procedures in the statistical literature, most applied statistical analysis continues to be based on the normal model. Our approach is to replace the normal model by a general location-scale family of nonlinear models which include several asymmetric distributions that have a wide range of practical applications for analysing univariate data. We focus on the second-order corrections to the likelihood ratio and score statistics, since they are the most commonly used large sample tests. We obtain simple formulae for the corrections in some special location-scale models. We use Monte Carlo simulation to show that the corrected likelihood ratio and score tests have empirical sizes closer to the nominal sizes than the classical uncorrected tests even when the scale parameter in replaced by a consistent estimate. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_43601024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43601024</jstor_id><sourcerecordid>43601024</sourcerecordid><originalsourceid>FETCH-jstor_primary_436010243</originalsourceid><addsrcrecordid>eNqFjsEKwjAQRIMoWNRPEPYHAmlSlV4VxaMH77KkW2xJs7LJpX9vBfHqXIY37zIzVVhXHvS-rOu5KkxpnDaHnV2qTUq9meJqW1lTKLyRtCwDRk_ALeQnwRElB8oZMDY_0Hl8EXgWIZ87jgm6CIkHgsAeP4tOHgNB5Bi6SCgwcEMhrdWixZBo8-2V2l7O99NV9ymzPF7SDSjjo3L76aat3D__BqxzQzc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance of the Bartlett and Bartlett-type corrections in some location-scale nonlinear models</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR</source><creator>Lordêlo, Maurício S. ; Cordeiro, Gauss M.</creator><creatorcontrib>Lordêlo, Maurício S. ; Cordeiro, Gauss M.</creatorcontrib><description>Statistical inference based on the normal model is known to be vulnerable to outliers. Despite this fact and the considerable interest in robust procedures in the statistical literature, most applied statistical analysis continues to be based on the normal model. Our approach is to replace the normal model by a general location-scale family of nonlinear models which include several asymmetric distributions that have a wide range of practical applications for analysing univariate data. We focus on the second-order corrections to the likelihood ratio and score statistics, since they are the most commonly used large sample tests. We obtain simple formulae for the corrections in some special location-scale models. We use Monte Carlo simulation to show that the corrected likelihood ratio and score tests have empirical sizes closer to the nominal sizes than the classical uncorrected tests even when the scale parameter in replaced by a consistent estimate.</description><identifier>ISSN: 0103-0752</identifier><identifier>EISSN: 2317-6199</identifier><language>eng</language><publisher>Brazilian Statistical Association</publisher><subject>Approximation ; Linear regression ; Logistics ; Mathematical independent variables ; Maximum likelihood estimation ; Modeling ; Null hypothesis ; Parametric models ; Regression analysis ; Statistics</subject><ispartof>Brazilian journal of probability and statistics, 2003-06, Vol.17 (1), p.75-90</ispartof><rights>Copyright ©2003. Associação Brasileira de Estatística</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43601024$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43601024$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Lordêlo, Maurício S.</creatorcontrib><creatorcontrib>Cordeiro, Gauss M.</creatorcontrib><title>Performance of the Bartlett and Bartlett-type corrections in some location-scale nonlinear models</title><title>Brazilian journal of probability and statistics</title><description>Statistical inference based on the normal model is known to be vulnerable to outliers. Despite this fact and the considerable interest in robust procedures in the statistical literature, most applied statistical analysis continues to be based on the normal model. Our approach is to replace the normal model by a general location-scale family of nonlinear models which include several asymmetric distributions that have a wide range of practical applications for analysing univariate data. We focus on the second-order corrections to the likelihood ratio and score statistics, since they are the most commonly used large sample tests. We obtain simple formulae for the corrections in some special location-scale models. We use Monte Carlo simulation to show that the corrected likelihood ratio and score tests have empirical sizes closer to the nominal sizes than the classical uncorrected tests even when the scale parameter in replaced by a consistent estimate.</description><subject>Approximation</subject><subject>Linear regression</subject><subject>Logistics</subject><subject>Mathematical independent variables</subject><subject>Maximum likelihood estimation</subject><subject>Modeling</subject><subject>Null hypothesis</subject><subject>Parametric models</subject><subject>Regression analysis</subject><subject>Statistics</subject><issn>0103-0752</issn><issn>2317-6199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjsEKwjAQRIMoWNRPEPYHAmlSlV4VxaMH77KkW2xJs7LJpX9vBfHqXIY37zIzVVhXHvS-rOu5KkxpnDaHnV2qTUq9meJqW1lTKLyRtCwDRk_ALeQnwRElB8oZMDY_0Hl8EXgWIZ87jgm6CIkHgsAeP4tOHgNB5Bi6SCgwcEMhrdWixZBo8-2V2l7O99NV9ymzPF7SDSjjo3L76aat3D__BqxzQzc</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Lordêlo, Maurício S.</creator><creator>Cordeiro, Gauss M.</creator><general>Brazilian Statistical Association</general><scope/></search><sort><creationdate>20030601</creationdate><title>Performance of the Bartlett and Bartlett-type corrections in some location-scale nonlinear models</title><author>Lordêlo, Maurício S. ; Cordeiro, Gauss M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_436010243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Approximation</topic><topic>Linear regression</topic><topic>Logistics</topic><topic>Mathematical independent variables</topic><topic>Maximum likelihood estimation</topic><topic>Modeling</topic><topic>Null hypothesis</topic><topic>Parametric models</topic><topic>Regression analysis</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Lordêlo, Maurício S.</creatorcontrib><creatorcontrib>Cordeiro, Gauss M.</creatorcontrib><jtitle>Brazilian journal of probability and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lordêlo, Maurício S.</au><au>Cordeiro, Gauss M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of the Bartlett and Bartlett-type corrections in some location-scale nonlinear models</atitle><jtitle>Brazilian journal of probability and statistics</jtitle><date>2003-06-01</date><risdate>2003</risdate><volume>17</volume><issue>1</issue><spage>75</spage><epage>90</epage><pages>75-90</pages><issn>0103-0752</issn><eissn>2317-6199</eissn><abstract>Statistical inference based on the normal model is known to be vulnerable to outliers. Despite this fact and the considerable interest in robust procedures in the statistical literature, most applied statistical analysis continues to be based on the normal model. Our approach is to replace the normal model by a general location-scale family of nonlinear models which include several asymmetric distributions that have a wide range of practical applications for analysing univariate data. We focus on the second-order corrections to the likelihood ratio and score statistics, since they are the most commonly used large sample tests. We obtain simple formulae for the corrections in some special location-scale models. We use Monte Carlo simulation to show that the corrected likelihood ratio and score tests have empirical sizes closer to the nominal sizes than the classical uncorrected tests even when the scale parameter in replaced by a consistent estimate.</abstract><pub>Brazilian Statistical Association</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0103-0752 |
ispartof | Brazilian journal of probability and statistics, 2003-06, Vol.17 (1), p.75-90 |
issn | 0103-0752 2317-6199 |
language | eng |
recordid | cdi_jstor_primary_43601024 |
source | JSTOR Mathematics & Statistics; JSTOR |
subjects | Approximation Linear regression Logistics Mathematical independent variables Maximum likelihood estimation Modeling Null hypothesis Parametric models Regression analysis Statistics |
title | Performance of the Bartlett and Bartlett-type corrections in some location-scale nonlinear models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20the%20Bartlett%20and%20Bartlett-type%20corrections%20in%20some%20location-scale%20nonlinear%20models&rft.jtitle=Brazilian%20journal%20of%20probability%20and%20statistics&rft.au=Lord%C3%AAlo,%20Maur%C3%ADcio%20S.&rft.date=2003-06-01&rft.volume=17&rft.issue=1&rft.spage=75&rft.epage=90&rft.pages=75-90&rft.issn=0103-0752&rft.eissn=2317-6199&rft_id=info:doi/&rft_dat=%3Cjstor%3E43601024%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43601024&rfr_iscdi=true |