Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes
In mitochondria, four respiratory-chain complexes drive oxidative phosphorylation by sustaining a proton-motive force across the inner membrane that is used to synthesize ATP. The question of how the densely packed proteins of the inner membrane are organized to optimize structure and function has r...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-11, Vol.111 (44), p.15735-15740 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15740 |
---|---|
container_issue | 44 |
container_start_page | 15735 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Blaza, James N. Serreli, Riccardo Jones, Andrew J. Y. Mohammed, Khairunnisa Hirst, Judy |
description | In mitochondria, four respiratory-chain complexes drive oxidative phosphorylation by sustaining a proton-motive force across the inner membrane that is used to synthesize ATP. The question of how the densely packed proteins of the inner membrane are organized to optimize structure and function has returned to prominence with the characterization of respiratory-chain supercomplexes. Supercomplexes are increasingly accepted structural entities, but their functional and catalytic advantages are disputed. Notably, substrate “channeling” between the enzymes in supercomplexes has been proposed to confer a kinetic advantage, relative to the rate provided by a freely accessible, common substrate pool. Here, we focus on the mitochondrial ubiquinone/ubiquinol pool. We formulate and test three conceptually simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important, and on whether the ubiquinone pool is partitioned between pathways. Our spectroscopic and kinetic experiments demonstrate how the metabolic pathways for NADH and succinate oxidation communicate and catalyze via a single, universally accessible ubiquinone/ubiquinol pool that is not partitioned or channeled. We reevaluate the major piece of contrary evidence from flux control analysis and find that the conclusion of substrate channeling arises from the particular behavior of a single inhibitor; we explain why different inhibitors behave differently and show that a robust flux control analysis provides no evidence for channeling. Finally, we discuss how the formation of respiratory-chain supercomplexes may confer alternative advantages on energy-converting membranes.
Significance Mitochondria produce ATP by using respiration to drive ATP synthase. Respiration is catalyzed by several membrane-bound complexes that are structurally organized into supercomplex assemblies. Supercomplexes have been proposed to confer a catalytic advantage by channeling of substrates between enzymes in the assemblies. Here, we test three simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important and show that it is not. We reinterpret previous data taken to support substrate channeling and reveal an alternative explanation for these data. Finally, we discuss alternative proposals for why the respiratory-chain complexes have evolved to form supercomplex structu |
doi_str_mv | 10.1073/pnas.1413855111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_43189818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43189818</jstor_id><sourcerecordid>43189818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-18213a3718bc8ab75c64dc44121171dcd0e1386fd1d74f39e7947277a71856153</originalsourceid><addsrcrecordid>eNqNkkuP0zAQgCMEYsvCmRMQiQuX7Hpsx44vSGi1PMRKHGDPlutMWlepnbWTikr8-HVoKY8TJ0uebz7NqyieA7kAItnl4E26AA6sqWsAeFAsgCioBFfkYbEghMqq4ZSfFU9S2hBCVN2Qx8UZrRmDRolF8eOz8zg6W-LOtegtlmZlnE9jOZg4utEF7_yqDF05rrGclu5ucj54LIcQ-tL49ue_NaPp97MmYo87M3tySsQ0uGjGEPeVXWdtmaYBow3bocfvmJ4WjzrTJ3x2fM-L2_fX364-VjdfPny6endT2VrBWEFDgRkmoVnaxixlbQVvLedAASS0tiWYByC6FlrJO6ZQKi6plCZn1AJqdl68PXiHabnF1qIfo-n1EN3WxL0Oxum_I96t9SrsNKdUACVZ8OYoiOFuwjTqrUsW-954DFPSIKhUgtZK_A-a62ZKNRl9_Q-6CVP0eRIzRRklnM_U5YGyMaQUsTvVDUTPR6DnI9C_jyBnvPyz3RP_a-sZKI_AnHnSAWjONdSSzSN7cUA2Ka_vxPBZ0MBc1atDvDNBm1V0Sd9-pQQEIbk50Sh2D2WBzHs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622320448</pqid></control><display><type>article</type><title>Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Blaza, James N. ; Serreli, Riccardo ; Jones, Andrew J. Y. ; Mohammed, Khairunnisa ; Hirst, Judy</creator><creatorcontrib>Blaza, James N. ; Serreli, Riccardo ; Jones, Andrew J. Y. ; Mohammed, Khairunnisa ; Hirst, Judy</creatorcontrib><description>In mitochondria, four respiratory-chain complexes drive oxidative phosphorylation by sustaining a proton-motive force across the inner membrane that is used to synthesize ATP. The question of how the densely packed proteins of the inner membrane are organized to optimize structure and function has returned to prominence with the characterization of respiratory-chain supercomplexes. Supercomplexes are increasingly accepted structural entities, but their functional and catalytic advantages are disputed. Notably, substrate “channeling” between the enzymes in supercomplexes has been proposed to confer a kinetic advantage, relative to the rate provided by a freely accessible, common substrate pool. Here, we focus on the mitochondrial ubiquinone/ubiquinol pool. We formulate and test three conceptually simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important, and on whether the ubiquinone pool is partitioned between pathways. Our spectroscopic and kinetic experiments demonstrate how the metabolic pathways for NADH and succinate oxidation communicate and catalyze via a single, universally accessible ubiquinone/ubiquinol pool that is not partitioned or channeled. We reevaluate the major piece of contrary evidence from flux control analysis and find that the conclusion of substrate channeling arises from the particular behavior of a single inhibitor; we explain why different inhibitors behave differently and show that a robust flux control analysis provides no evidence for channeling. Finally, we discuss how the formation of respiratory-chain supercomplexes may confer alternative advantages on energy-converting membranes.
Significance Mitochondria produce ATP by using respiration to drive ATP synthase. Respiration is catalyzed by several membrane-bound complexes that are structurally organized into supercomplex assemblies. Supercomplexes have been proposed to confer a catalytic advantage by channeling of substrates between enzymes in the assemblies. Here, we test three simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important and show that it is not. We reinterpret previous data taken to support substrate channeling and reveal an alternative explanation for these data. Finally, we discuss alternative proposals for why the respiratory-chain complexes have evolved to form supercomplex structures.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1413855111</identifier><identifier>PMID: 25331896</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Catalysis ; Cattle ; Electron Transport - physiology ; Electron Transport Complex I - chemistry ; Electron Transport Complex I - metabolism ; Enzyme substrates ; Enzymes ; Kinetics ; Mitochondria ; Mitochondria, Heart - enzymology ; Models, Chemical ; NAD - chemistry ; NAD - metabolism ; Organic chemicals ; Oxidation ; Oxidation-Reduction ; P branes ; Phosphorylation ; Spectral methods ; Spectroscopy ; Succinic Acid - chemistry ; Succinic Acid - metabolism ; Ubiquinone - chemistry ; Ubiquinone - metabolism ; Ungulates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-11, Vol.111 (44), p.15735-15740</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 4, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-18213a3718bc8ab75c64dc44121171dcd0e1386fd1d74f39e7947277a71856153</citedby><cites>FETCH-LOGICAL-c591t-18213a3718bc8ab75c64dc44121171dcd0e1386fd1d74f39e7947277a71856153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/44.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43189818$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43189818$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25331896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blaza, James N.</creatorcontrib><creatorcontrib>Serreli, Riccardo</creatorcontrib><creatorcontrib>Jones, Andrew J. Y.</creatorcontrib><creatorcontrib>Mohammed, Khairunnisa</creatorcontrib><creatorcontrib>Hirst, Judy</creatorcontrib><title>Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In mitochondria, four respiratory-chain complexes drive oxidative phosphorylation by sustaining a proton-motive force across the inner membrane that is used to synthesize ATP. The question of how the densely packed proteins of the inner membrane are organized to optimize structure and function has returned to prominence with the characterization of respiratory-chain supercomplexes. Supercomplexes are increasingly accepted structural entities, but their functional and catalytic advantages are disputed. Notably, substrate “channeling” between the enzymes in supercomplexes has been proposed to confer a kinetic advantage, relative to the rate provided by a freely accessible, common substrate pool. Here, we focus on the mitochondrial ubiquinone/ubiquinol pool. We formulate and test three conceptually simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important, and on whether the ubiquinone pool is partitioned between pathways. Our spectroscopic and kinetic experiments demonstrate how the metabolic pathways for NADH and succinate oxidation communicate and catalyze via a single, universally accessible ubiquinone/ubiquinol pool that is not partitioned or channeled. We reevaluate the major piece of contrary evidence from flux control analysis and find that the conclusion of substrate channeling arises from the particular behavior of a single inhibitor; we explain why different inhibitors behave differently and show that a robust flux control analysis provides no evidence for channeling. Finally, we discuss how the formation of respiratory-chain supercomplexes may confer alternative advantages on energy-converting membranes.
Significance Mitochondria produce ATP by using respiration to drive ATP synthase. Respiration is catalyzed by several membrane-bound complexes that are structurally organized into supercomplex assemblies. Supercomplexes have been proposed to confer a catalytic advantage by channeling of substrates between enzymes in the assemblies. Here, we test three simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important and show that it is not. We reinterpret previous data taken to support substrate channeling and reveal an alternative explanation for these data. Finally, we discuss alternative proposals for why the respiratory-chain complexes have evolved to form supercomplex structures.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Cattle</subject><subject>Electron Transport - physiology</subject><subject>Electron Transport Complex I - chemistry</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Enzyme substrates</subject><subject>Enzymes</subject><subject>Kinetics</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - enzymology</subject><subject>Models, Chemical</subject><subject>NAD - chemistry</subject><subject>NAD - metabolism</subject><subject>Organic chemicals</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>P branes</subject><subject>Phosphorylation</subject><subject>Spectral methods</subject><subject>Spectroscopy</subject><subject>Succinic Acid - chemistry</subject><subject>Succinic Acid - metabolism</subject><subject>Ubiquinone - chemistry</subject><subject>Ubiquinone - metabolism</subject><subject>Ungulates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkuP0zAQgCMEYsvCmRMQiQuX7Hpsx44vSGi1PMRKHGDPlutMWlepnbWTikr8-HVoKY8TJ0uebz7NqyieA7kAItnl4E26AA6sqWsAeFAsgCioBFfkYbEghMqq4ZSfFU9S2hBCVN2Qx8UZrRmDRolF8eOz8zg6W-LOtegtlmZlnE9jOZg4utEF7_yqDF05rrGclu5ucj54LIcQ-tL49ue_NaPp97MmYo87M3tySsQ0uGjGEPeVXWdtmaYBow3bocfvmJ4WjzrTJ3x2fM-L2_fX364-VjdfPny6endT2VrBWEFDgRkmoVnaxixlbQVvLedAASS0tiWYByC6FlrJO6ZQKi6plCZn1AJqdl68PXiHabnF1qIfo-n1EN3WxL0Oxum_I96t9SrsNKdUACVZ8OYoiOFuwjTqrUsW-954DFPSIKhUgtZK_A-a62ZKNRl9_Q-6CVP0eRIzRRklnM_U5YGyMaQUsTvVDUTPR6DnI9C_jyBnvPyz3RP_a-sZKI_AnHnSAWjONdSSzSN7cUA2Ka_vxPBZ0MBc1atDvDNBm1V0Sd9-pQQEIbk50Sh2D2WBzHs</recordid><startdate>20141104</startdate><enddate>20141104</enddate><creator>Blaza, James N.</creator><creator>Serreli, Riccardo</creator><creator>Jones, Andrew J. Y.</creator><creator>Mohammed, Khairunnisa</creator><creator>Hirst, Judy</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141104</creationdate><title>Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes</title><author>Blaza, James N. ; Serreli, Riccardo ; Jones, Andrew J. Y. ; Mohammed, Khairunnisa ; Hirst, Judy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-18213a3718bc8ab75c64dc44121171dcd0e1386fd1d74f39e7947277a71856153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Cattle</topic><topic>Electron Transport - physiology</topic><topic>Electron Transport Complex I - chemistry</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Enzyme substrates</topic><topic>Enzymes</topic><topic>Kinetics</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - enzymology</topic><topic>Models, Chemical</topic><topic>NAD - chemistry</topic><topic>NAD - metabolism</topic><topic>Organic chemicals</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>P branes</topic><topic>Phosphorylation</topic><topic>Spectral methods</topic><topic>Spectroscopy</topic><topic>Succinic Acid - chemistry</topic><topic>Succinic Acid - metabolism</topic><topic>Ubiquinone - chemistry</topic><topic>Ubiquinone - metabolism</topic><topic>Ungulates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blaza, James N.</creatorcontrib><creatorcontrib>Serreli, Riccardo</creatorcontrib><creatorcontrib>Jones, Andrew J. Y.</creatorcontrib><creatorcontrib>Mohammed, Khairunnisa</creatorcontrib><creatorcontrib>Hirst, Judy</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blaza, James N.</au><au>Serreli, Riccardo</au><au>Jones, Andrew J. Y.</au><au>Mohammed, Khairunnisa</au><au>Hirst, Judy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-11-04</date><risdate>2014</risdate><volume>111</volume><issue>44</issue><spage>15735</spage><epage>15740</epage><pages>15735-15740</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In mitochondria, four respiratory-chain complexes drive oxidative phosphorylation by sustaining a proton-motive force across the inner membrane that is used to synthesize ATP. The question of how the densely packed proteins of the inner membrane are organized to optimize structure and function has returned to prominence with the characterization of respiratory-chain supercomplexes. Supercomplexes are increasingly accepted structural entities, but their functional and catalytic advantages are disputed. Notably, substrate “channeling” between the enzymes in supercomplexes has been proposed to confer a kinetic advantage, relative to the rate provided by a freely accessible, common substrate pool. Here, we focus on the mitochondrial ubiquinone/ubiquinol pool. We formulate and test three conceptually simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important, and on whether the ubiquinone pool is partitioned between pathways. Our spectroscopic and kinetic experiments demonstrate how the metabolic pathways for NADH and succinate oxidation communicate and catalyze via a single, universally accessible ubiquinone/ubiquinol pool that is not partitioned or channeled. We reevaluate the major piece of contrary evidence from flux control analysis and find that the conclusion of substrate channeling arises from the particular behavior of a single inhibitor; we explain why different inhibitors behave differently and show that a robust flux control analysis provides no evidence for channeling. Finally, we discuss how the formation of respiratory-chain supercomplexes may confer alternative advantages on energy-converting membranes.
Significance Mitochondria produce ATP by using respiration to drive ATP synthase. Respiration is catalyzed by several membrane-bound complexes that are structurally organized into supercomplex assemblies. Supercomplexes have been proposed to confer a catalytic advantage by channeling of substrates between enzymes in the assemblies. Here, we test three simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important and show that it is not. We reinterpret previous data taken to support substrate channeling and reveal an alternative explanation for these data. Finally, we discuss alternative proposals for why the respiratory-chain complexes have evolved to form supercomplex structures.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25331896</pmid><doi>10.1073/pnas.1413855111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-11, Vol.111 (44), p.15735-15740 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_43189818 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Catalysis Cattle Electron Transport - physiology Electron Transport Complex I - chemistry Electron Transport Complex I - metabolism Enzyme substrates Enzymes Kinetics Mitochondria Mitochondria, Heart - enzymology Models, Chemical NAD - chemistry NAD - metabolism Organic chemicals Oxidation Oxidation-Reduction P branes Phosphorylation Spectral methods Spectroscopy Succinic Acid - chemistry Succinic Acid - metabolism Ubiquinone - chemistry Ubiquinone - metabolism Ungulates |
title | Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20evidence%20against%20partitioning%20of%20the%20ubiquinone%20pool%20and%20the%20catalytic%20relevance%20of%20respiratory-chain%20supercomplexes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Blaza,%20James%20N.&rft.date=2014-11-04&rft.volume=111&rft.issue=44&rft.spage=15735&rft.epage=15740&rft.pages=15735-15740&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1413855111&rft_dat=%3Cjstor_pubme%3E43189818%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622320448&rft_id=info:pmid/25331896&rft_jstor_id=43189818&rfr_iscdi=true |