Mechanochemical actuators of embryonic epithelial contractility

Spatiotemporal regulation of cell contractility coordinates cell shape change to construct tissue architecture and ultimately directs the morphology and function of the organism. Here we show that contractility responses to spatially and temporally controlled chemical stimuli depend much more strong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-10, Vol.111 (40), p.14366-14371
Hauptverfasser: Kim, YongTae, Hazar, Melis, Vijayraghavan, Deepthi S., Song, Jiho, Jackson, Timothy R., Joshi, Sagar D., Messner, William C., Davidson, Lance A., LeDuc, Philip R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14371
container_issue 40
container_start_page 14366
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Kim, YongTae
Hazar, Melis
Vijayraghavan, Deepthi S.
Song, Jiho
Jackson, Timothy R.
Joshi, Sagar D.
Messner, William C.
Davidson, Lance A.
LeDuc, Philip R.
description Spatiotemporal regulation of cell contractility coordinates cell shape change to construct tissue architecture and ultimately directs the morphology and function of the organism. Here we show that contractility responses to spatially and temporally controlled chemical stimuli depend much more strongly on intercellular mechanical connections than on biochemical cues in both stimulated tissues and adjacent cells. We investigate how the cell contractility is triggered within an embryonic epithelial sheet by local ligand stimulation and coordinates a long-range contraction response. Our custom micro fluidic control system allows spatiotemporally controlled stimulation with extracellular ATP, which results in locally distinct contractility followed by mechanical strain pattern formation. The stimulationresponse circuit exposed here provides a better understanding of how morphogenetic processes integrate responses to stimulation and how intercellular responses are transmitted across multiple cells. These findings may enable one to create a biological actuator that actively drives morphogenesis.
doi_str_mv 10.1073/pnas.1405209111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_43055110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43055110</jstor_id><sourcerecordid>43055110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-d50643a1bde1fa7c4d0da799d1f943a059c92b4e71c30b26208156d8126d59eb3</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxS3UChbaM6eiSFy4BGb8lfWlCKG2VAJxac-W4zhdr5J4ayeV9r-vo122lJNH9m-e580j5BzhGqFiN5vBpGvkICgoRDwiC8xFKbmCd2QBQKtyySk_IacprQFAiSUckxMqKJeCqwW5fXJ2ZYZgV6731nSFseNkxhBTEdrC9XXchsHbwm38uHKdz4QNwxgz5js_bj-Q963pkvu4P8_Iz69fftw_lI_P377f3z2WVgIfy0aA5Mxg3ThsTWV5A42plGqwVfkehLKK1txVaBnUVFJYopDNEqlshHI1OyOfd7qbqe5dY908Q6c30fcmbnUwXv__MviV_hX-aE4x-4YscLUXiOH35NKoe5-s6zozuDAljTIvByrBZUYv36DrMMUh28sUAlJkbKZudpSNIaXo2sMwCHoOR8_h6H_h5I6L1x4O_EsaGSj2wNx5kEPUPEtyJudfP-2QdcohHRjOQAhEYH8BgeqfLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610121336</pqid></control><display><type>article</type><title>Mechanochemical actuators of embryonic epithelial contractility</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, YongTae ; Hazar, Melis ; Vijayraghavan, Deepthi S. ; Song, Jiho ; Jackson, Timothy R. ; Joshi, Sagar D. ; Messner, William C. ; Davidson, Lance A. ; LeDuc, Philip R.</creator><creatorcontrib>Kim, YongTae ; Hazar, Melis ; Vijayraghavan, Deepthi S. ; Song, Jiho ; Jackson, Timothy R. ; Joshi, Sagar D. ; Messner, William C. ; Davidson, Lance A. ; LeDuc, Philip R.</creatorcontrib><description>Spatiotemporal regulation of cell contractility coordinates cell shape change to construct tissue architecture and ultimately directs the morphology and function of the organism. Here we show that contractility responses to spatially and temporally controlled chemical stimuli depend much more strongly on intercellular mechanical connections than on biochemical cues in both stimulated tissues and adjacent cells. We investigate how the cell contractility is triggered within an embryonic epithelial sheet by local ligand stimulation and coordinates a long-range contraction response. Our custom micro fluidic control system allows spatiotemporally controlled stimulation with extracellular ATP, which results in locally distinct contractility followed by mechanical strain pattern formation. The stimulationresponse circuit exposed here provides a better understanding of how morphogenetic processes integrate responses to stimulation and how intercellular responses are transmitted across multiple cells. These findings may enable one to create a biological actuator that actively drives morphogenesis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1405209111</identifier><identifier>PMID: 25246549</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine Triphosphate - pharmacology ; Animals ; Biochemistry ; Biological Sciences ; Cell Shape - drug effects ; Cells ; Dextrans - metabolism ; Embryological stage ; Embryonic cells ; Embryos ; Female ; Gap Junctions - metabolism ; Isoquinolines - metabolism ; Ligands ; Mechanotransduction, Cellular - drug effects ; Mechanotransduction, Cellular - physiology ; Microfluidic Analytical Techniques ; Microscopy, Confocal ; Morphogenesis ; Physical Sciences ; Rhodamines - metabolism ; Signal transmission ; Signals ; Strain distribution ; Stromal cells ; Structural strain ; Xenopus laevis ; Zygote - drug effects ; Zygote - metabolism ; Zygote - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (40), p.14366-14371</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 7, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-d50643a1bde1fa7c4d0da799d1f943a059c92b4e71c30b26208156d8126d59eb3</citedby><cites>FETCH-LOGICAL-c604t-d50643a1bde1fa7c4d0da799d1f943a059c92b4e71c30b26208156d8126d59eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43055110$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43055110$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25246549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, YongTae</creatorcontrib><creatorcontrib>Hazar, Melis</creatorcontrib><creatorcontrib>Vijayraghavan, Deepthi S.</creatorcontrib><creatorcontrib>Song, Jiho</creatorcontrib><creatorcontrib>Jackson, Timothy R.</creatorcontrib><creatorcontrib>Joshi, Sagar D.</creatorcontrib><creatorcontrib>Messner, William C.</creatorcontrib><creatorcontrib>Davidson, Lance A.</creatorcontrib><creatorcontrib>LeDuc, Philip R.</creatorcontrib><title>Mechanochemical actuators of embryonic epithelial contractility</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Spatiotemporal regulation of cell contractility coordinates cell shape change to construct tissue architecture and ultimately directs the morphology and function of the organism. Here we show that contractility responses to spatially and temporally controlled chemical stimuli depend much more strongly on intercellular mechanical connections than on biochemical cues in both stimulated tissues and adjacent cells. We investigate how the cell contractility is triggered within an embryonic epithelial sheet by local ligand stimulation and coordinates a long-range contraction response. Our custom micro fluidic control system allows spatiotemporally controlled stimulation with extracellular ATP, which results in locally distinct contractility followed by mechanical strain pattern formation. The stimulationresponse circuit exposed here provides a better understanding of how morphogenetic processes integrate responses to stimulation and how intercellular responses are transmitted across multiple cells. These findings may enable one to create a biological actuator that actively drives morphogenesis.</description><subject>Adenosine Triphosphate - pharmacology</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell Shape - drug effects</subject><subject>Cells</subject><subject>Dextrans - metabolism</subject><subject>Embryological stage</subject><subject>Embryonic cells</subject><subject>Embryos</subject><subject>Female</subject><subject>Gap Junctions - metabolism</subject><subject>Isoquinolines - metabolism</subject><subject>Ligands</subject><subject>Mechanotransduction, Cellular - drug effects</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microscopy, Confocal</subject><subject>Morphogenesis</subject><subject>Physical Sciences</subject><subject>Rhodamines - metabolism</subject><subject>Signal transmission</subject><subject>Signals</subject><subject>Strain distribution</subject><subject>Stromal cells</subject><subject>Structural strain</subject><subject>Xenopus laevis</subject><subject>Zygote - drug effects</subject><subject>Zygote - metabolism</subject><subject>Zygote - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxS3UChbaM6eiSFy4BGb8lfWlCKG2VAJxac-W4zhdr5J4ayeV9r-vo122lJNH9m-e580j5BzhGqFiN5vBpGvkICgoRDwiC8xFKbmCd2QBQKtyySk_IacprQFAiSUckxMqKJeCqwW5fXJ2ZYZgV6731nSFseNkxhBTEdrC9XXchsHbwm38uHKdz4QNwxgz5js_bj-Q963pkvu4P8_Iz69fftw_lI_P377f3z2WVgIfy0aA5Mxg3ThsTWV5A42plGqwVfkehLKK1txVaBnUVFJYopDNEqlshHI1OyOfd7qbqe5dY908Q6c30fcmbnUwXv__MviV_hX-aE4x-4YscLUXiOH35NKoe5-s6zozuDAljTIvByrBZUYv36DrMMUh28sUAlJkbKZudpSNIaXo2sMwCHoOR8_h6H_h5I6L1x4O_EsaGSj2wNx5kEPUPEtyJudfP-2QdcohHRjOQAhEYH8BgeqfLw</recordid><startdate>20141007</startdate><enddate>20141007</enddate><creator>Kim, YongTae</creator><creator>Hazar, Melis</creator><creator>Vijayraghavan, Deepthi S.</creator><creator>Song, Jiho</creator><creator>Jackson, Timothy R.</creator><creator>Joshi, Sagar D.</creator><creator>Messner, William C.</creator><creator>Davidson, Lance A.</creator><creator>LeDuc, Philip R.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141007</creationdate><title>Mechanochemical actuators of embryonic epithelial contractility</title><author>Kim, YongTae ; Hazar, Melis ; Vijayraghavan, Deepthi S. ; Song, Jiho ; Jackson, Timothy R. ; Joshi, Sagar D. ; Messner, William C. ; Davidson, Lance A. ; LeDuc, Philip R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-d50643a1bde1fa7c4d0da799d1f943a059c92b4e71c30b26208156d8126d59eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenosine Triphosphate - pharmacology</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell Shape - drug effects</topic><topic>Cells</topic><topic>Dextrans - metabolism</topic><topic>Embryological stage</topic><topic>Embryonic cells</topic><topic>Embryos</topic><topic>Female</topic><topic>Gap Junctions - metabolism</topic><topic>Isoquinolines - metabolism</topic><topic>Ligands</topic><topic>Mechanotransduction, Cellular - drug effects</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microscopy, Confocal</topic><topic>Morphogenesis</topic><topic>Physical Sciences</topic><topic>Rhodamines - metabolism</topic><topic>Signal transmission</topic><topic>Signals</topic><topic>Strain distribution</topic><topic>Stromal cells</topic><topic>Structural strain</topic><topic>Xenopus laevis</topic><topic>Zygote - drug effects</topic><topic>Zygote - metabolism</topic><topic>Zygote - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, YongTae</creatorcontrib><creatorcontrib>Hazar, Melis</creatorcontrib><creatorcontrib>Vijayraghavan, Deepthi S.</creatorcontrib><creatorcontrib>Song, Jiho</creatorcontrib><creatorcontrib>Jackson, Timothy R.</creatorcontrib><creatorcontrib>Joshi, Sagar D.</creatorcontrib><creatorcontrib>Messner, William C.</creatorcontrib><creatorcontrib>Davidson, Lance A.</creatorcontrib><creatorcontrib>LeDuc, Philip R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, YongTae</au><au>Hazar, Melis</au><au>Vijayraghavan, Deepthi S.</au><au>Song, Jiho</au><au>Jackson, Timothy R.</au><au>Joshi, Sagar D.</au><au>Messner, William C.</au><au>Davidson, Lance A.</au><au>LeDuc, Philip R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanochemical actuators of embryonic epithelial contractility</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-10-07</date><risdate>2014</risdate><volume>111</volume><issue>40</issue><spage>14366</spage><epage>14371</epage><pages>14366-14371</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Spatiotemporal regulation of cell contractility coordinates cell shape change to construct tissue architecture and ultimately directs the morphology and function of the organism. Here we show that contractility responses to spatially and temporally controlled chemical stimuli depend much more strongly on intercellular mechanical connections than on biochemical cues in both stimulated tissues and adjacent cells. We investigate how the cell contractility is triggered within an embryonic epithelial sheet by local ligand stimulation and coordinates a long-range contraction response. Our custom micro fluidic control system allows spatiotemporally controlled stimulation with extracellular ATP, which results in locally distinct contractility followed by mechanical strain pattern formation. The stimulationresponse circuit exposed here provides a better understanding of how morphogenetic processes integrate responses to stimulation and how intercellular responses are transmitted across multiple cells. These findings may enable one to create a biological actuator that actively drives morphogenesis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25246549</pmid><doi>10.1073/pnas.1405209111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (40), p.14366-14371
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_43055110
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphate - pharmacology
Animals
Biochemistry
Biological Sciences
Cell Shape - drug effects
Cells
Dextrans - metabolism
Embryological stage
Embryonic cells
Embryos
Female
Gap Junctions - metabolism
Isoquinolines - metabolism
Ligands
Mechanotransduction, Cellular - drug effects
Mechanotransduction, Cellular - physiology
Microfluidic Analytical Techniques
Microscopy, Confocal
Morphogenesis
Physical Sciences
Rhodamines - metabolism
Signal transmission
Signals
Strain distribution
Stromal cells
Structural strain
Xenopus laevis
Zygote - drug effects
Zygote - metabolism
Zygote - physiology
title Mechanochemical actuators of embryonic epithelial contractility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanochemical%20actuators%20of%20embryonic%20epithelial%20contractility&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kim,%20YongTae&rft.date=2014-10-07&rft.volume=111&rft.issue=40&rft.spage=14366&rft.epage=14371&rft.pages=14366-14371&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1405209111&rft_dat=%3Cjstor_proqu%3E43055110%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610121336&rft_id=info:pmid/25246549&rft_jstor_id=43055110&rfr_iscdi=true