Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1

Massive research efforts are now underway to develop a cure for HIV infection, allowing patients to discontinue lifelong combination antiretroviral therapy (ART). New latency-reversing agents (LRAs) may be able to purge the persistent reservoir of latent virus in resting memory CD4⁺ T cells, but the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-09, Vol.111 (37), p.13475-13480
Hauptverfasser: Hill, Alison L., Rosenbloom, Daniel I. S., Fu, Feng, Nowak, Martin A., Siliciano, Robert F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13480
container_issue 37
container_start_page 13475
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Hill, Alison L.
Rosenbloom, Daniel I. S.
Fu, Feng
Nowak, Martin A.
Siliciano, Robert F.
description Massive research efforts are now underway to develop a cure for HIV infection, allowing patients to discontinue lifelong combination antiretroviral therapy (ART). New latency-reversing agents (LRAs) may be able to purge the persistent reservoir of latent virus in resting memory CD4⁺ T cells, but the degree of reservoir reduction needed for cure remains unknown. Here we use a stochastic model of infection dynamics to estimate the efficacy of LRA needed to prevent viral rebound after ART interruption. We incorporate clinical data to estimate population-level parameter distributions and outcomes. Our findings suggest that ~2,000-fold reductions are required to permit a majority of patients to interrupt ART for 1 y without rebound and that rebound may occur suddenly after multiple years. Greater than 10,000-fold reductions may be required to prevent rebound altogether. Our results predict large variation in rebound times following LRA therapy, which will complicate clinical management. This model provides benchmarks for moving LRAs from the laboratory to the clinic and can aid in the design and interpretation of clinical trials. These results also apply to other interventions to reduce the latent reservoir and can explain the observed return of viremia after months of apparent cure in recent bone marrow transplant recipients and an immediately-treated neonate.
doi_str_mv 10.1073/pnas.1406663111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_43043494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43043494</jstor_id><sourcerecordid>43043494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-f480cfbe510cc08a13e2b9a97a379f30431b16db57a501bad871439d7cf284363</originalsourceid><addsrcrecordid>eNqF0ktv1DAQAGALgehSOHMCWeLCJe1M_IovSKgCWqkSPQBXy3GcNqskXmynEv8eh12Wx6UnW_Y3I3tmCHmJcIag2PlutukMOUgpGSI-IhsEjZXkGh6TDUCtqobX_IQ8S2kLAFo08JSc1AK0qiXfkJub6LvB5WG-pfnO07BkFyafaOhpjt7myc-Z5kB9tMXZ7H-xsWzKefTJx_swRNqHSC-vvlX4nDzp7Zj8i8N6Sr5-_PDl4rK6_vzp6uL9deUkQK563oDrWy8QnIPGIvN1q61WlindM-AMW5RdK5QVgK3tGoWc6U65vm44k-yUvNvn3S3t5DtXnhPtaHZxmGz8YYIdzL8383BnbsO94Si1FnVJ8PaQIIbvi0_ZTENyfhzt7MOSDDbAkEul8WEqsUHBgDUPUyEZSBQKCn3zH92GJc6laKviyLWAVZ3vlYshpej74xcRzDoDZp0B82cGSsTrvytz9L-bXgA9gDXymA7RMGWQcSUKebUn25RDPBq-NoZrzn4CCg6_rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564149500</pqid></control><display><type>article</type><title>Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hill, Alison L. ; Rosenbloom, Daniel I. S. ; Fu, Feng ; Nowak, Martin A. ; Siliciano, Robert F.</creator><creatorcontrib>Hill, Alison L. ; Rosenbloom, Daniel I. S. ; Fu, Feng ; Nowak, Martin A. ; Siliciano, Robert F.</creatorcontrib><description>Massive research efforts are now underway to develop a cure for HIV infection, allowing patients to discontinue lifelong combination antiretroviral therapy (ART). New latency-reversing agents (LRAs) may be able to purge the persistent reservoir of latent virus in resting memory CD4⁺ T cells, but the degree of reservoir reduction needed for cure remains unknown. Here we use a stochastic model of infection dynamics to estimate the efficacy of LRA needed to prevent viral rebound after ART interruption. We incorporate clinical data to estimate population-level parameter distributions and outcomes. Our findings suggest that ~2,000-fold reductions are required to permit a majority of patients to interrupt ART for 1 y without rebound and that rebound may occur suddenly after multiple years. Greater than 10,000-fold reductions may be required to prevent rebound altogether. Our results predict large variation in rebound times following LRA therapy, which will complicate clinical management. This model provides benchmarks for moving LRAs from the laboratory to the clinic and can aid in the design and interpretation of clinical trials. These results also apply to other interventions to reduce the latent reservoir and can explain the observed return of viremia after months of apparent cure in recent bone marrow transplant recipients and an immediately-treated neonate.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1406663111</identifier><identifier>PMID: 25097264</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>antiretroviral agents ; Antiretroviral drugs ; Antiretrovirals ; Benchmarks ; Biological Sciences ; Bone marrow ; case studies ; Cells ; clinical trials ; Disease Eradication ; Disease Reservoirs - virology ; drugs ; HIV ; HIV 1 ; HIV infections ; HIV Infections - therapy ; HIV Infections - virology ; HIV-1 - physiology ; Human immunodeficiency virus ; Human immunodeficiency virus 1 ; Humans ; Infections ; mathematical models ; Medical cures ; Modeling ; Models, Biological ; Parametric models ; Physical Sciences ; prediction ; remission ; Stem cells ; Stochastic Processes ; T lymphocytes ; Time Factors ; Transplants &amp; implants ; Treatment Outcome ; Uncertainty ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (37), p.13475-13480</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 16, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-f480cfbe510cc08a13e2b9a97a379f30431b16db57a501bad871439d7cf284363</citedby><cites>FETCH-LOGICAL-c600t-f480cfbe510cc08a13e2b9a97a379f30431b16db57a501bad871439d7cf284363</cites><orcidid>0000-0003-1413-3907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43043494$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43043494$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25097264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hill, Alison L.</creatorcontrib><creatorcontrib>Rosenbloom, Daniel I. S.</creatorcontrib><creatorcontrib>Fu, Feng</creatorcontrib><creatorcontrib>Nowak, Martin A.</creatorcontrib><creatorcontrib>Siliciano, Robert F.</creatorcontrib><title>Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Massive research efforts are now underway to develop a cure for HIV infection, allowing patients to discontinue lifelong combination antiretroviral therapy (ART). New latency-reversing agents (LRAs) may be able to purge the persistent reservoir of latent virus in resting memory CD4⁺ T cells, but the degree of reservoir reduction needed for cure remains unknown. Here we use a stochastic model of infection dynamics to estimate the efficacy of LRA needed to prevent viral rebound after ART interruption. We incorporate clinical data to estimate population-level parameter distributions and outcomes. Our findings suggest that ~2,000-fold reductions are required to permit a majority of patients to interrupt ART for 1 y without rebound and that rebound may occur suddenly after multiple years. Greater than 10,000-fold reductions may be required to prevent rebound altogether. Our results predict large variation in rebound times following LRA therapy, which will complicate clinical management. This model provides benchmarks for moving LRAs from the laboratory to the clinic and can aid in the design and interpretation of clinical trials. These results also apply to other interventions to reduce the latent reservoir and can explain the observed return of viremia after months of apparent cure in recent bone marrow transplant recipients and an immediately-treated neonate.</description><subject>antiretroviral agents</subject><subject>Antiretroviral drugs</subject><subject>Antiretrovirals</subject><subject>Benchmarks</subject><subject>Biological Sciences</subject><subject>Bone marrow</subject><subject>case studies</subject><subject>Cells</subject><subject>clinical trials</subject><subject>Disease Eradication</subject><subject>Disease Reservoirs - virology</subject><subject>drugs</subject><subject>HIV</subject><subject>HIV 1</subject><subject>HIV infections</subject><subject>HIV Infections - therapy</subject><subject>HIV Infections - virology</subject><subject>HIV-1 - physiology</subject><subject>Human immunodeficiency virus</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Infections</subject><subject>mathematical models</subject><subject>Medical cures</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Parametric models</subject><subject>Physical Sciences</subject><subject>prediction</subject><subject>remission</subject><subject>Stem cells</subject><subject>Stochastic Processes</subject><subject>T lymphocytes</subject><subject>Time Factors</subject><subject>Transplants &amp; implants</subject><subject>Treatment Outcome</subject><subject>Uncertainty</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ktv1DAQAGALgehSOHMCWeLCJe1M_IovSKgCWqkSPQBXy3GcNqskXmynEv8eh12Wx6UnW_Y3I3tmCHmJcIag2PlutukMOUgpGSI-IhsEjZXkGh6TDUCtqobX_IQ8S2kLAFo08JSc1AK0qiXfkJub6LvB5WG-pfnO07BkFyafaOhpjt7myc-Z5kB9tMXZ7H-xsWzKefTJx_swRNqHSC-vvlX4nDzp7Zj8i8N6Sr5-_PDl4rK6_vzp6uL9deUkQK563oDrWy8QnIPGIvN1q61WlindM-AMW5RdK5QVgK3tGoWc6U65vm44k-yUvNvn3S3t5DtXnhPtaHZxmGz8YYIdzL8383BnbsO94Si1FnVJ8PaQIIbvi0_ZTENyfhzt7MOSDDbAkEul8WEqsUHBgDUPUyEZSBQKCn3zH92GJc6laKviyLWAVZ3vlYshpej74xcRzDoDZp0B82cGSsTrvytz9L-bXgA9gDXymA7RMGWQcSUKebUn25RDPBq-NoZrzn4CCg6_rw</recordid><startdate>20140916</startdate><enddate>20140916</enddate><creator>Hill, Alison L.</creator><creator>Rosenbloom, Daniel I. S.</creator><creator>Fu, Feng</creator><creator>Nowak, Martin A.</creator><creator>Siliciano, Robert F.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1413-3907</orcidid></search><sort><creationdate>20140916</creationdate><title>Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1</title><author>Hill, Alison L. ; Rosenbloom, Daniel I. S. ; Fu, Feng ; Nowak, Martin A. ; Siliciano, Robert F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-f480cfbe510cc08a13e2b9a97a379f30431b16db57a501bad871439d7cf284363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>antiretroviral agents</topic><topic>Antiretroviral drugs</topic><topic>Antiretrovirals</topic><topic>Benchmarks</topic><topic>Biological Sciences</topic><topic>Bone marrow</topic><topic>case studies</topic><topic>Cells</topic><topic>clinical trials</topic><topic>Disease Eradication</topic><topic>Disease Reservoirs - virology</topic><topic>drugs</topic><topic>HIV</topic><topic>HIV 1</topic><topic>HIV infections</topic><topic>HIV Infections - therapy</topic><topic>HIV Infections - virology</topic><topic>HIV-1 - physiology</topic><topic>Human immunodeficiency virus</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Infections</topic><topic>mathematical models</topic><topic>Medical cures</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Parametric models</topic><topic>Physical Sciences</topic><topic>prediction</topic><topic>remission</topic><topic>Stem cells</topic><topic>Stochastic Processes</topic><topic>T lymphocytes</topic><topic>Time Factors</topic><topic>Transplants &amp; implants</topic><topic>Treatment Outcome</topic><topic>Uncertainty</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hill, Alison L.</creatorcontrib><creatorcontrib>Rosenbloom, Daniel I. S.</creatorcontrib><creatorcontrib>Fu, Feng</creatorcontrib><creatorcontrib>Nowak, Martin A.</creatorcontrib><creatorcontrib>Siliciano, Robert F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hill, Alison L.</au><au>Rosenbloom, Daniel I. S.</au><au>Fu, Feng</au><au>Nowak, Martin A.</au><au>Siliciano, Robert F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-09-16</date><risdate>2014</risdate><volume>111</volume><issue>37</issue><spage>13475</spage><epage>13480</epage><pages>13475-13480</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Massive research efforts are now underway to develop a cure for HIV infection, allowing patients to discontinue lifelong combination antiretroviral therapy (ART). New latency-reversing agents (LRAs) may be able to purge the persistent reservoir of latent virus in resting memory CD4⁺ T cells, but the degree of reservoir reduction needed for cure remains unknown. Here we use a stochastic model of infection dynamics to estimate the efficacy of LRA needed to prevent viral rebound after ART interruption. We incorporate clinical data to estimate population-level parameter distributions and outcomes. Our findings suggest that ~2,000-fold reductions are required to permit a majority of patients to interrupt ART for 1 y without rebound and that rebound may occur suddenly after multiple years. Greater than 10,000-fold reductions may be required to prevent rebound altogether. Our results predict large variation in rebound times following LRA therapy, which will complicate clinical management. This model provides benchmarks for moving LRAs from the laboratory to the clinic and can aid in the design and interpretation of clinical trials. These results also apply to other interventions to reduce the latent reservoir and can explain the observed return of viremia after months of apparent cure in recent bone marrow transplant recipients and an immediately-treated neonate.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25097264</pmid><doi>10.1073/pnas.1406663111</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1413-3907</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (37), p.13475-13480
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_43043494
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects antiretroviral agents
Antiretroviral drugs
Antiretrovirals
Benchmarks
Biological Sciences
Bone marrow
case studies
Cells
clinical trials
Disease Eradication
Disease Reservoirs - virology
drugs
HIV
HIV 1
HIV infections
HIV Infections - therapy
HIV Infections - virology
HIV-1 - physiology
Human immunodeficiency virus
Human immunodeficiency virus 1
Humans
Infections
mathematical models
Medical cures
Modeling
Models, Biological
Parametric models
Physical Sciences
prediction
remission
Stem cells
Stochastic Processes
T lymphocytes
Time Factors
Transplants & implants
Treatment Outcome
Uncertainty
Viruses
title Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20outcomes%20of%20treatment%20to%20eradicate%20the%20latent%20reservoir%20for%20HIV-1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hill,%20Alison%20L.&rft.date=2014-09-16&rft.volume=111&rft.issue=37&rft.spage=13475&rft.epage=13480&rft.pages=13475-13480&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1406663111&rft_dat=%3Cjstor_proqu%3E43043494%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564149500&rft_id=info:pmid/25097264&rft_jstor_id=43043494&rfr_iscdi=true