Maturation of cortical circuits requires Semaphorin 7A
Abnormal cortical circuits underlie some cognitive and psychiatric disorders, yet the molecular signals that generate normal cortical networks remain poorly understood. Semaphorin 7A (Sema7A) is an atypical member of the semaphorin family that is GPI-linked, expressed principally postnatally, and en...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-09, Vol.111 (38), p.13978-13983 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13983 |
---|---|
container_issue | 38 |
container_start_page | 13978 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Carcea, Ioana Patil, Shekhar B. Robison, Alfred J. Mesias, Roxana Huntsman, Molly M. Froemke, Robert C. Buxbaum, Joseph D. Huntley, George W. Benson, Deanna L. |
description | Abnormal cortical circuits underlie some cognitive and psychiatric disorders, yet the molecular signals that generate normal cortical networks remain poorly understood. Semaphorin 7A (Sema7A) is an atypical member of the semaphorin family that is GPI-linked, expressed principally postnatally, and enriched in sensory cortex. Significantly, SEMA7A is deleted in individuals with 15q24 microdeletion syndrome, characterized by developmental delay, autism, and sensory perceptual deficits. We studied the role that Sema7A plays in establishing functional cortical circuitry in mouse somatosensory barrel cortex. We found that Sema7A is expressed in spiny stellate cells and GABAergic interneurons and that its absence disrupts barrel cytoarchitecture, reduces asymmetrical orientation of spiny stellate cell dendrites, and functionally impairs thalamocortically evoked synaptic responses, with reduced feed-forward GABAergic inhibition. These data identify Sema7A as a regulator of thalamocortical and local circuit development in layer 4 and provide a molecular handle that can be used to explore the coordinated generation of excitatory and inhibitory cortical circuits.
Significance Sensory experience exerts profound control over the structure and function of developing cortical circuits during an early postnatal critical period. Abnormalities in this process contribute to perceptual and cognitive deficits, but molecular mechanisms generating excitatory and inhibitory cortical networks during this period remain poorly understood. We show here that Semaphorin 7A (Sema7A) is highly expressed in mouse somatosensory cortex when tactile information conveyed by the thalamus shapes development of somatosensory cortical networks. In mice lacking Sema7A, the anatomical layout of the somatosensory cortex is disrupted, dendritic arbors are misoriented, inhibitory connections develop abnormally, and thalamocortical activity fails to elicit a normal balance of excitation and inhibition. Taken together, our data indicate that maturation of thalamocortical and local circuits in cortex requires Sema7A. |
doi_str_mv | 10.1073/pnas.1408680111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_43043242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43043242</jstor_id><sourcerecordid>43043242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-77bfeb6a4620e7d9778bbc2331f0a1435dab8977d4da10f8bd7cffa0966c7fa43</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhzAmIxIVL2pnY8ccFqaqAIrXiUHq2HMduvcrGWztB4r_HYZelcOnJ0rzfPHneI-Q1wgmCoKfb0eQTZCC5BER8QlYICmvOFDwlK4BG1JI17Ii8yHkNAKqV8JwcNW0DqES7IvzKTHMyU4hjFX1lY5qCNUNlQ7JzmHKV3P0cksvVtduY7V1MYazE2UvyzJshu1f795jcfP70_fyivvz25ev52WVtW4VTLUTnXccN4w040SshZNfZhlL0YJDRtjedLNOe9QbBy64X1nsDinMrvGH0mHzc-W7nbuN668YpmUFvU9iY9FNHE_S_yhju9G38oRlKSpvF4MPeIMX72eVJb0K2bhjM6OKcNUqgIKVo5eNoy9sWUCpV0Pf_oes4p7Ek8ZuSJWeKhTrdUTbFnJPzh38j6KU-vdSn_9ZXNt4-PPfA_-mrANUeWDYPdoiaSo1UieWMNztknaeYDgyjwEogTdHf7XRvoja3KWR9c13sOUBphFNJfwEp47L0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565809531</pqid></control><display><type>article</type><title>Maturation of cortical circuits requires Semaphorin 7A</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Carcea, Ioana ; Patil, Shekhar B. ; Robison, Alfred J. ; Mesias, Roxana ; Huntsman, Molly M. ; Froemke, Robert C. ; Buxbaum, Joseph D. ; Huntley, George W. ; Benson, Deanna L.</creator><creatorcontrib>Carcea, Ioana ; Patil, Shekhar B. ; Robison, Alfred J. ; Mesias, Roxana ; Huntsman, Molly M. ; Froemke, Robert C. ; Buxbaum, Joseph D. ; Huntley, George W. ; Benson, Deanna L.</creatorcontrib><description>Abnormal cortical circuits underlie some cognitive and psychiatric disorders, yet the molecular signals that generate normal cortical networks remain poorly understood. Semaphorin 7A (Sema7A) is an atypical member of the semaphorin family that is GPI-linked, expressed principally postnatally, and enriched in sensory cortex. Significantly, SEMA7A is deleted in individuals with 15q24 microdeletion syndrome, characterized by developmental delay, autism, and sensory perceptual deficits. We studied the role that Sema7A plays in establishing functional cortical circuitry in mouse somatosensory barrel cortex. We found that Sema7A is expressed in spiny stellate cells and GABAergic interneurons and that its absence disrupts barrel cytoarchitecture, reduces asymmetrical orientation of spiny stellate cell dendrites, and functionally impairs thalamocortically evoked synaptic responses, with reduced feed-forward GABAergic inhibition. These data identify Sema7A as a regulator of thalamocortical and local circuit development in layer 4 and provide a molecular handle that can be used to explore the coordinated generation of excitatory and inhibitory cortical circuits.
Significance Sensory experience exerts profound control over the structure and function of developing cortical circuits during an early postnatal critical period. Abnormalities in this process contribute to perceptual and cognitive deficits, but molecular mechanisms generating excitatory and inhibitory cortical networks during this period remain poorly understood. We show here that Semaphorin 7A (Sema7A) is highly expressed in mouse somatosensory cortex when tactile information conveyed by the thalamus shapes development of somatosensory cortical networks. In mice lacking Sema7A, the anatomical layout of the somatosensory cortex is disrupted, dendritic arbors are misoriented, inhibitory connections develop abnormally, and thalamocortical activity fails to elicit a normal balance of excitation and inhibition. Taken together, our data indicate that maturation of thalamocortical and local circuits in cortex requires Sema7A.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1408680111</identifier><identifier>PMID: 25201975</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antigens, CD - genetics ; Antigens, CD - metabolism ; Asymmetry ; Axons ; Biological Sciences ; Brain ; cognition ; cortex ; Cytoarchitecture ; Dendrites ; Dendrites - metabolism ; Developmental biology ; Evoked Potentials - physiology ; Genotypes ; Interneurons ; Maturation ; Mice ; Mice, Knockout ; Nerve Net - cytology ; Nerve Net - metabolism ; Neurons ; Rats ; Rats, Sprague-Dawley ; Rodents ; Semaphorins ; Semaphorins - genetics ; Semaphorins - metabolism ; Sensory perception ; Somatosensory cortex ; Somatosensory Cortex - cytology ; Somatosensory Cortex - metabolism ; Synapses ; Synaptic Transmission - physiology ; thalamus</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (38), p.13978-13983</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 23, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-77bfeb6a4620e7d9778bbc2331f0a1435dab8977d4da10f8bd7cffa0966c7fa43</citedby><cites>FETCH-LOGICAL-c591t-77bfeb6a4620e7d9778bbc2331f0a1435dab8977d4da10f8bd7cffa0966c7fa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43043242$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43043242$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25201975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carcea, Ioana</creatorcontrib><creatorcontrib>Patil, Shekhar B.</creatorcontrib><creatorcontrib>Robison, Alfred J.</creatorcontrib><creatorcontrib>Mesias, Roxana</creatorcontrib><creatorcontrib>Huntsman, Molly M.</creatorcontrib><creatorcontrib>Froemke, Robert C.</creatorcontrib><creatorcontrib>Buxbaum, Joseph D.</creatorcontrib><creatorcontrib>Huntley, George W.</creatorcontrib><creatorcontrib>Benson, Deanna L.</creatorcontrib><title>Maturation of cortical circuits requires Semaphorin 7A</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Abnormal cortical circuits underlie some cognitive and psychiatric disorders, yet the molecular signals that generate normal cortical networks remain poorly understood. Semaphorin 7A (Sema7A) is an atypical member of the semaphorin family that is GPI-linked, expressed principally postnatally, and enriched in sensory cortex. Significantly, SEMA7A is deleted in individuals with 15q24 microdeletion syndrome, characterized by developmental delay, autism, and sensory perceptual deficits. We studied the role that Sema7A plays in establishing functional cortical circuitry in mouse somatosensory barrel cortex. We found that Sema7A is expressed in spiny stellate cells and GABAergic interneurons and that its absence disrupts barrel cytoarchitecture, reduces asymmetrical orientation of spiny stellate cell dendrites, and functionally impairs thalamocortically evoked synaptic responses, with reduced feed-forward GABAergic inhibition. These data identify Sema7A as a regulator of thalamocortical and local circuit development in layer 4 and provide a molecular handle that can be used to explore the coordinated generation of excitatory and inhibitory cortical circuits.
Significance Sensory experience exerts profound control over the structure and function of developing cortical circuits during an early postnatal critical period. Abnormalities in this process contribute to perceptual and cognitive deficits, but molecular mechanisms generating excitatory and inhibitory cortical networks during this period remain poorly understood. We show here that Semaphorin 7A (Sema7A) is highly expressed in mouse somatosensory cortex when tactile information conveyed by the thalamus shapes development of somatosensory cortical networks. In mice lacking Sema7A, the anatomical layout of the somatosensory cortex is disrupted, dendritic arbors are misoriented, inhibitory connections develop abnormally, and thalamocortical activity fails to elicit a normal balance of excitation and inhibition. Taken together, our data indicate that maturation of thalamocortical and local circuits in cortex requires Sema7A.</description><subject>Animals</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD - metabolism</subject><subject>Asymmetry</subject><subject>Axons</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>cognition</subject><subject>cortex</subject><subject>Cytoarchitecture</subject><subject>Dendrites</subject><subject>Dendrites - metabolism</subject><subject>Developmental biology</subject><subject>Evoked Potentials - physiology</subject><subject>Genotypes</subject><subject>Interneurons</subject><subject>Maturation</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - metabolism</subject><subject>Neurons</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Semaphorins</subject><subject>Semaphorins - genetics</subject><subject>Semaphorins - metabolism</subject><subject>Sensory perception</subject><subject>Somatosensory cortex</subject><subject>Somatosensory Cortex - cytology</subject><subject>Somatosensory Cortex - metabolism</subject><subject>Synapses</subject><subject>Synaptic Transmission - physiology</subject><subject>thalamus</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EokvhzAmIxIVL2pnY8ccFqaqAIrXiUHq2HMduvcrGWztB4r_HYZelcOnJ0rzfPHneI-Q1wgmCoKfb0eQTZCC5BER8QlYICmvOFDwlK4BG1JI17Ii8yHkNAKqV8JwcNW0DqES7IvzKTHMyU4hjFX1lY5qCNUNlQ7JzmHKV3P0cksvVtduY7V1MYazE2UvyzJshu1f795jcfP70_fyivvz25ev52WVtW4VTLUTnXccN4w040SshZNfZhlL0YJDRtjedLNOe9QbBy64X1nsDinMrvGH0mHzc-W7nbuN668YpmUFvU9iY9FNHE_S_yhju9G38oRlKSpvF4MPeIMX72eVJb0K2bhjM6OKcNUqgIKVo5eNoy9sWUCpV0Pf_oes4p7Ek8ZuSJWeKhTrdUTbFnJPzh38j6KU-vdSn_9ZXNt4-PPfA_-mrANUeWDYPdoiaSo1UieWMNztknaeYDgyjwEogTdHf7XRvoja3KWR9c13sOUBphFNJfwEp47L0</recordid><startdate>20140923</startdate><enddate>20140923</enddate><creator>Carcea, Ioana</creator><creator>Patil, Shekhar B.</creator><creator>Robison, Alfred J.</creator><creator>Mesias, Roxana</creator><creator>Huntsman, Molly M.</creator><creator>Froemke, Robert C.</creator><creator>Buxbaum, Joseph D.</creator><creator>Huntley, George W.</creator><creator>Benson, Deanna L.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140923</creationdate><title>Maturation of cortical circuits requires Semaphorin 7A</title><author>Carcea, Ioana ; Patil, Shekhar B. ; Robison, Alfred J. ; Mesias, Roxana ; Huntsman, Molly M. ; Froemke, Robert C. ; Buxbaum, Joseph D. ; Huntley, George W. ; Benson, Deanna L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-77bfeb6a4620e7d9778bbc2331f0a1435dab8977d4da10f8bd7cffa0966c7fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD - metabolism</topic><topic>Asymmetry</topic><topic>Axons</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>cognition</topic><topic>cortex</topic><topic>Cytoarchitecture</topic><topic>Dendrites</topic><topic>Dendrites - metabolism</topic><topic>Developmental biology</topic><topic>Evoked Potentials - physiology</topic><topic>Genotypes</topic><topic>Interneurons</topic><topic>Maturation</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - metabolism</topic><topic>Neurons</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Semaphorins</topic><topic>Semaphorins - genetics</topic><topic>Semaphorins - metabolism</topic><topic>Sensory perception</topic><topic>Somatosensory cortex</topic><topic>Somatosensory Cortex - cytology</topic><topic>Somatosensory Cortex - metabolism</topic><topic>Synapses</topic><topic>Synaptic Transmission - physiology</topic><topic>thalamus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carcea, Ioana</creatorcontrib><creatorcontrib>Patil, Shekhar B.</creatorcontrib><creatorcontrib>Robison, Alfred J.</creatorcontrib><creatorcontrib>Mesias, Roxana</creatorcontrib><creatorcontrib>Huntsman, Molly M.</creatorcontrib><creatorcontrib>Froemke, Robert C.</creatorcontrib><creatorcontrib>Buxbaum, Joseph D.</creatorcontrib><creatorcontrib>Huntley, George W.</creatorcontrib><creatorcontrib>Benson, Deanna L.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carcea, Ioana</au><au>Patil, Shekhar B.</au><au>Robison, Alfred J.</au><au>Mesias, Roxana</au><au>Huntsman, Molly M.</au><au>Froemke, Robert C.</au><au>Buxbaum, Joseph D.</au><au>Huntley, George W.</au><au>Benson, Deanna L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maturation of cortical circuits requires Semaphorin 7A</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-09-23</date><risdate>2014</risdate><volume>111</volume><issue>38</issue><spage>13978</spage><epage>13983</epage><pages>13978-13983</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Abnormal cortical circuits underlie some cognitive and psychiatric disorders, yet the molecular signals that generate normal cortical networks remain poorly understood. Semaphorin 7A (Sema7A) is an atypical member of the semaphorin family that is GPI-linked, expressed principally postnatally, and enriched in sensory cortex. Significantly, SEMA7A is deleted in individuals with 15q24 microdeletion syndrome, characterized by developmental delay, autism, and sensory perceptual deficits. We studied the role that Sema7A plays in establishing functional cortical circuitry in mouse somatosensory barrel cortex. We found that Sema7A is expressed in spiny stellate cells and GABAergic interneurons and that its absence disrupts barrel cytoarchitecture, reduces asymmetrical orientation of spiny stellate cell dendrites, and functionally impairs thalamocortically evoked synaptic responses, with reduced feed-forward GABAergic inhibition. These data identify Sema7A as a regulator of thalamocortical and local circuit development in layer 4 and provide a molecular handle that can be used to explore the coordinated generation of excitatory and inhibitory cortical circuits.
Significance Sensory experience exerts profound control over the structure and function of developing cortical circuits during an early postnatal critical period. Abnormalities in this process contribute to perceptual and cognitive deficits, but molecular mechanisms generating excitatory and inhibitory cortical networks during this period remain poorly understood. We show here that Semaphorin 7A (Sema7A) is highly expressed in mouse somatosensory cortex when tactile information conveyed by the thalamus shapes development of somatosensory cortical networks. In mice lacking Sema7A, the anatomical layout of the somatosensory cortex is disrupted, dendritic arbors are misoriented, inhibitory connections develop abnormally, and thalamocortical activity fails to elicit a normal balance of excitation and inhibition. Taken together, our data indicate that maturation of thalamocortical and local circuits in cortex requires Sema7A.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25201975</pmid><doi>10.1073/pnas.1408680111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (38), p.13978-13983 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_43043242 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Antigens, CD - genetics Antigens, CD - metabolism Asymmetry Axons Biological Sciences Brain cognition cortex Cytoarchitecture Dendrites Dendrites - metabolism Developmental biology Evoked Potentials - physiology Genotypes Interneurons Maturation Mice Mice, Knockout Nerve Net - cytology Nerve Net - metabolism Neurons Rats Rats, Sprague-Dawley Rodents Semaphorins Semaphorins - genetics Semaphorins - metabolism Sensory perception Somatosensory cortex Somatosensory Cortex - cytology Somatosensory Cortex - metabolism Synapses Synaptic Transmission - physiology thalamus |
title | Maturation of cortical circuits requires Semaphorin 7A |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maturation%20of%20cortical%20circuits%20requires%20Semaphorin%207A&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Carcea,%20Ioana&rft.date=2014-09-23&rft.volume=111&rft.issue=38&rft.spage=13978&rft.epage=13983&rft.pages=13978-13983&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1408680111&rft_dat=%3Cjstor_proqu%3E43043242%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565809531&rft_id=info:pmid/25201975&rft_jstor_id=43043242&rfr_iscdi=true |