Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves
18O discrimination in CO2 stems from the oxygen exchange between 18O-enriched water and CO2 in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this 18O-labeled CO2 escapes back to the atmosphere, resulting in an effective discrimination against $\text{C}{}^{18}\text{...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2000-05, Vol.123 (1), p.201-213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | 1 |
container_start_page | 201 |
container_title | Plant physiology (Bethesda) |
container_volume | 123 |
creator | Jim S. Gillon Yakir, Dan |
description | 18O discrimination in CO2 stems from the oxygen exchange between 18O-enriched water and CO2 in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this 18O-labeled CO2 escapes back to the atmosphere, resulting in an effective discrimination against $\text{C}{}^{18}\text{O}\text{O}$ during photosynthesis ($\Delta {}^{18}\text{O}$). By constraining the δ 18O of chloroplast water ($\delta _{\text{e}}$) by analysis of transpired water and the extent of $\text{CO}_{2}-\text{H}_{2}\text{O}$ isotopic equilibrium ($\theta _{\text{eq}}$) by measurements of CA activity ($\theta _{\text{eq}}$ = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured $\Delta {}^{18}\text{O}$ in a leaf cuvette attached to a mass spectrometer to derive the CO2 concentration at the physical limit of CA activity, i.e. the chloroplast surface ($c_{\text{cs}}$). From the CO2 drawdown sequence between stomatal cavities from gas exchange (ci), from $\Delta {}^{18}\text{O}$ ($c_{\text{cs}}$), and at Rubisco sites from $\Delta {}^{13}\text{C}$ ($c_{\text{c}}$), the internal CO2 conductance ($g_{\text{i}}$) was partitioned into cell wall ($g_{\text{w}}$) and chloroplast ($g_{\text{ch}}$) components. The results indicated that $g_{\text{ch}}$ is variable (0.42-1.13 mol m-2 s-1) and proportional to CA activity. We suggest that the influence of CA activity on the CO2 assimilation rate should be important mainly in plants with low internal conductances. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_4279249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279249</jstor_id><sourcerecordid>4279249</sourcerecordid><originalsourceid>FETCH-jstor_primary_42792493</originalsourceid><addsrcrecordid>eNpjYuA0NDU20jUyNbFgYeA0MACyDSwsLDkYuIqLswwMDAyNDU04GbI980pSi_IScxSc8_NSSpNLEvOSUxVK8hWc_R81NSm4ZKallRZn5ucpJOalKKjElKRWlFQ711bXxlUbWtRCuP5wWgWovji5KDM3My-xBKQpM0_B-VFTs4JPamJZajEPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLwBqTCyqjDcxMrc0MrE0JiANACO_Ry0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jim S. Gillon ; Yakir, Dan</creator><creatorcontrib>Jim S. Gillon ; Yakir, Dan</creatorcontrib><description>18O discrimination in CO2 stems from the oxygen exchange between 18O-enriched water and CO2 in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this 18O-labeled CO2 escapes back to the atmosphere, resulting in an effective discrimination against $\text{C}{}^{18}\text{O}\text{O}$ during photosynthesis ($\Delta {}^{18}\text{O}$). By constraining the δ 18O of chloroplast water ($\delta _{\text{e}}$) by analysis of transpired water and the extent of $\text{CO}_{2}-\text{H}_{2}\text{O}$ isotopic equilibrium ($\theta _{\text{eq}}$) by measurements of CA activity ($\theta _{\text{eq}}$ = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured $\Delta {}^{18}\text{O}$ in a leaf cuvette attached to a mass spectrometer to derive the CO2 concentration at the physical limit of CA activity, i.e. the chloroplast surface ($c_{\text{cs}}$). From the CO2 drawdown sequence between stomatal cavities from gas exchange (ci), from $\Delta {}^{18}\text{O}$ ($c_{\text{cs}}$), and at Rubisco sites from $\Delta {}^{13}\text{C}$ ($c_{\text{c}}$), the internal CO2 conductance ($g_{\text{i}}$) was partitioned into cell wall ($g_{\text{w}}$) and chloroplast ($g_{\text{ch}}$) components. The results indicated that $g_{\text{ch}}$ is variable (0.42-1.13 mol m-2 s-1) and proportional to CA activity. We suggest that the influence of CA activity on the CO2 assimilation rate should be important mainly in plants with low internal conductances.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><language>eng</language><publisher>American Society of Plant Physiologists</publisher><subject>Carbon dioxide ; Carbon isotopes ; Chloroplasts ; Fractionation ; Leaves ; Oxygen ; Oxygen isotopes ; Photosynthesis ; Plants ; Water vapor ; Whole Plant and Ecophysiology</subject><ispartof>Plant physiology (Bethesda), 2000-05, Vol.123 (1), p.201-213</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279249$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279249$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,58017,58250</link.rule.ids></links><search><creatorcontrib>Jim S. Gillon</creatorcontrib><creatorcontrib>Yakir, Dan</creatorcontrib><title>Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves</title><title>Plant physiology (Bethesda)</title><description>18O discrimination in CO2 stems from the oxygen exchange between 18O-enriched water and CO2 in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this 18O-labeled CO2 escapes back to the atmosphere, resulting in an effective discrimination against $\text{C}{}^{18}\text{O}\text{O}$ during photosynthesis ($\Delta {}^{18}\text{O}$). By constraining the δ 18O of chloroplast water ($\delta _{\text{e}}$) by analysis of transpired water and the extent of $\text{CO}_{2}-\text{H}_{2}\text{O}$ isotopic equilibrium ($\theta _{\text{eq}}$) by measurements of CA activity ($\theta _{\text{eq}}$ = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured $\Delta {}^{18}\text{O}$ in a leaf cuvette attached to a mass spectrometer to derive the CO2 concentration at the physical limit of CA activity, i.e. the chloroplast surface ($c_{\text{cs}}$). From the CO2 drawdown sequence between stomatal cavities from gas exchange (ci), from $\Delta {}^{18}\text{O}$ ($c_{\text{cs}}$), and at Rubisco sites from $\Delta {}^{13}\text{C}$ ($c_{\text{c}}$), the internal CO2 conductance ($g_{\text{i}}$) was partitioned into cell wall ($g_{\text{w}}$) and chloroplast ($g_{\text{ch}}$) components. The results indicated that $g_{\text{ch}}$ is variable (0.42-1.13 mol m-2 s-1) and proportional to CA activity. We suggest that the influence of CA activity on the CO2 assimilation rate should be important mainly in plants with low internal conductances.</description><subject>Carbon dioxide</subject><subject>Carbon isotopes</subject><subject>Chloroplasts</subject><subject>Fractionation</subject><subject>Leaves</subject><subject>Oxygen</subject><subject>Oxygen isotopes</subject><subject>Photosynthesis</subject><subject>Plants</subject><subject>Water vapor</subject><subject>Whole Plant and Ecophysiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NDU20jUyNbFgYeA0MACyDSwsLDkYuIqLswwMDAyNDU04GbI980pSi_IScxSc8_NSSpNLEvOSUxVK8hWc_R81NSm4ZKallRZn5ucpJOalKKjElKRWlFQ711bXxlUbWtRCuP5wWgWovji5KDM3My-xBKQpM0_B-VFTs4JPamJZajEPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLwBqTCyqjDcxMrc0MrE0JiANACO_Ry0</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Jim S. Gillon</creator><creator>Yakir, Dan</creator><general>American Society of Plant Physiologists</general><scope/></search><sort><creationdate>20000501</creationdate><title>Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves</title><author>Jim S. Gillon ; Yakir, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_42792493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Carbon dioxide</topic><topic>Carbon isotopes</topic><topic>Chloroplasts</topic><topic>Fractionation</topic><topic>Leaves</topic><topic>Oxygen</topic><topic>Oxygen isotopes</topic><topic>Photosynthesis</topic><topic>Plants</topic><topic>Water vapor</topic><topic>Whole Plant and Ecophysiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jim S. Gillon</creatorcontrib><creatorcontrib>Yakir, Dan</creatorcontrib><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jim S. Gillon</au><au>Yakir, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>123</volume><issue>1</issue><spage>201</spage><epage>213</epage><pages>201-213</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>18O discrimination in CO2 stems from the oxygen exchange between 18O-enriched water and CO2 in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this 18O-labeled CO2 escapes back to the atmosphere, resulting in an effective discrimination against $\text{C}{}^{18}\text{O}\text{O}$ during photosynthesis ($\Delta {}^{18}\text{O}$). By constraining the δ 18O of chloroplast water ($\delta _{\text{e}}$) by analysis of transpired water and the extent of $\text{CO}_{2}-\text{H}_{2}\text{O}$ isotopic equilibrium ($\theta _{\text{eq}}$) by measurements of CA activity ($\theta _{\text{eq}}$ = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured $\Delta {}^{18}\text{O}$ in a leaf cuvette attached to a mass spectrometer to derive the CO2 concentration at the physical limit of CA activity, i.e. the chloroplast surface ($c_{\text{cs}}$). From the CO2 drawdown sequence between stomatal cavities from gas exchange (ci), from $\Delta {}^{18}\text{O}$ ($c_{\text{cs}}$), and at Rubisco sites from $\Delta {}^{13}\text{C}$ ($c_{\text{c}}$), the internal CO2 conductance ($g_{\text{i}}$) was partitioned into cell wall ($g_{\text{w}}$) and chloroplast ($g_{\text{ch}}$) components. The results indicated that $g_{\text{ch}}$ is variable (0.42-1.13 mol m-2 s-1) and proportional to CA activity. We suggest that the influence of CA activity on the CO2 assimilation rate should be important mainly in plants with low internal conductances.</abstract><pub>American Society of Plant Physiologists</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2000-05, Vol.123 (1), p.201-213 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_jstor_primary_4279249 |
source | JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Carbon dioxide Carbon isotopes Chloroplasts Fractionation Leaves Oxygen Oxygen isotopes Photosynthesis Plants Water vapor Whole Plant and Ecophysiology |
title | Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Conductance%20to%20CO%E2%82%82%20Diffusion%20and%20$%5Ctext%7BC%7D%7B%7D%5E%7B18%7D%5Ctext%7BO%7D%5Ctext%7BO%7D$%20Discrimination%20in%20C%E2%82%83%20Leaves&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Jim%20S.%20Gillon&rft.date=2000-05-01&rft.volume=123&rft.issue=1&rft.spage=201&rft.epage=213&rft.pages=201-213&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/&rft_dat=%3Cjstor%3E4279249%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4279249&rfr_iscdi=true |