Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves

18O discrimination in CO2 stems from the oxygen exchange between 18O-enriched water and CO2 in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this 18O-labeled CO2 escapes back to the atmosphere, resulting in an effective discrimination against $\text{C}{}^{18}\text{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2000-05, Vol.123 (1), p.201-213
Hauptverfasser: Jim S. Gillon, Yakir, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 1
container_start_page 201
container_title Plant physiology (Bethesda)
container_volume 123
creator Jim S. Gillon
Yakir, Dan
description 18O discrimination in CO2 stems from the oxygen exchange between 18O-enriched water and CO2 in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this 18O-labeled CO2 escapes back to the atmosphere, resulting in an effective discrimination against $\text{C}{}^{18}\text{O}\text{O}$ during photosynthesis ($\Delta {}^{18}\text{O}$). By constraining the δ 18O of chloroplast water ($\delta _{\text{e}}$) by analysis of transpired water and the extent of $\text{CO}_{2}-\text{H}_{2}\text{O}$ isotopic equilibrium ($\theta _{\text{eq}}$) by measurements of CA activity ($\theta _{\text{eq}}$ = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured $\Delta {}^{18}\text{O}$ in a leaf cuvette attached to a mass spectrometer to derive the CO2 concentration at the physical limit of CA activity, i.e. the chloroplast surface ($c_{\text{cs}}$). From the CO2 drawdown sequence between stomatal cavities from gas exchange (ci), from $\Delta {}^{18}\text{O}$ ($c_{\text{cs}}$), and at Rubisco sites from $\Delta {}^{13}\text{C}$ ($c_{\text{c}}$), the internal CO2 conductance ($g_{\text{i}}$) was partitioned into cell wall ($g_{\text{w}}$) and chloroplast ($g_{\text{ch}}$) components. The results indicated that $g_{\text{ch}}$ is variable (0.42-1.13 mol m-2 s-1) and proportional to CA activity. We suggest that the influence of CA activity on the CO2 assimilation rate should be important mainly in plants with low internal conductances.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_4279249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279249</jstor_id><sourcerecordid>4279249</sourcerecordid><originalsourceid>FETCH-jstor_primary_42792493</originalsourceid><addsrcrecordid>eNpjYuA0NDU20jUyNbFgYeA0MACyDSwsLDkYuIqLswwMDAyNDU04GbI980pSi_IScxSc8_NSSpNLEvOSUxVK8hWc_R81NSm4ZKallRZn5ucpJOalKKjElKRWlFQ711bXxlUbWtRCuP5wWgWovji5KDM3My-xBKQpM0_B-VFTs4JPamJZajEPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLwBqTCyqjDcxMrc0MrE0JiANACO_Ry0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jim S. Gillon ; Yakir, Dan</creator><creatorcontrib>Jim S. Gillon ; Yakir, Dan</creatorcontrib><description>18O discrimination in CO2 stems from the oxygen exchange between 18O-enriched water and CO2 in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this 18O-labeled CO2 escapes back to the atmosphere, resulting in an effective discrimination against $\text{C}{}^{18}\text{O}\text{O}$ during photosynthesis ($\Delta {}^{18}\text{O}$). By constraining the δ 18O of chloroplast water ($\delta _{\text{e}}$) by analysis of transpired water and the extent of $\text{CO}_{2}-\text{H}_{2}\text{O}$ isotopic equilibrium ($\theta _{\text{eq}}$) by measurements of CA activity ($\theta _{\text{eq}}$ = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured $\Delta {}^{18}\text{O}$ in a leaf cuvette attached to a mass spectrometer to derive the CO2 concentration at the physical limit of CA activity, i.e. the chloroplast surface ($c_{\text{cs}}$). From the CO2 drawdown sequence between stomatal cavities from gas exchange (ci), from $\Delta {}^{18}\text{O}$ ($c_{\text{cs}}$), and at Rubisco sites from $\Delta {}^{13}\text{C}$ ($c_{\text{c}}$), the internal CO2 conductance ($g_{\text{i}}$) was partitioned into cell wall ($g_{\text{w}}$) and chloroplast ($g_{\text{ch}}$) components. The results indicated that $g_{\text{ch}}$ is variable (0.42-1.13 mol m-2 s-1) and proportional to CA activity. We suggest that the influence of CA activity on the CO2 assimilation rate should be important mainly in plants with low internal conductances.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><language>eng</language><publisher>American Society of Plant Physiologists</publisher><subject>Carbon dioxide ; Carbon isotopes ; Chloroplasts ; Fractionation ; Leaves ; Oxygen ; Oxygen isotopes ; Photosynthesis ; Plants ; Water vapor ; Whole Plant and Ecophysiology</subject><ispartof>Plant physiology (Bethesda), 2000-05, Vol.123 (1), p.201-213</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279249$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279249$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,58017,58250</link.rule.ids></links><search><creatorcontrib>Jim S. Gillon</creatorcontrib><creatorcontrib>Yakir, Dan</creatorcontrib><title>Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves</title><title>Plant physiology (Bethesda)</title><description>18O discrimination in CO2 stems from the oxygen exchange between 18O-enriched water and CO2 in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this 18O-labeled CO2 escapes back to the atmosphere, resulting in an effective discrimination against $\text{C}{}^{18}\text{O}\text{O}$ during photosynthesis ($\Delta {}^{18}\text{O}$). By constraining the δ 18O of chloroplast water ($\delta _{\text{e}}$) by analysis of transpired water and the extent of $\text{CO}_{2}-\text{H}_{2}\text{O}$ isotopic equilibrium ($\theta _{\text{eq}}$) by measurements of CA activity ($\theta _{\text{eq}}$ = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured $\Delta {}^{18}\text{O}$ in a leaf cuvette attached to a mass spectrometer to derive the CO2 concentration at the physical limit of CA activity, i.e. the chloroplast surface ($c_{\text{cs}}$). From the CO2 drawdown sequence between stomatal cavities from gas exchange (ci), from $\Delta {}^{18}\text{O}$ ($c_{\text{cs}}$), and at Rubisco sites from $\Delta {}^{13}\text{C}$ ($c_{\text{c}}$), the internal CO2 conductance ($g_{\text{i}}$) was partitioned into cell wall ($g_{\text{w}}$) and chloroplast ($g_{\text{ch}}$) components. The results indicated that $g_{\text{ch}}$ is variable (0.42-1.13 mol m-2 s-1) and proportional to CA activity. We suggest that the influence of CA activity on the CO2 assimilation rate should be important mainly in plants with low internal conductances.</description><subject>Carbon dioxide</subject><subject>Carbon isotopes</subject><subject>Chloroplasts</subject><subject>Fractionation</subject><subject>Leaves</subject><subject>Oxygen</subject><subject>Oxygen isotopes</subject><subject>Photosynthesis</subject><subject>Plants</subject><subject>Water vapor</subject><subject>Whole Plant and Ecophysiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NDU20jUyNbFgYeA0MACyDSwsLDkYuIqLswwMDAyNDU04GbI980pSi_IScxSc8_NSSpNLEvOSUxVK8hWc_R81NSm4ZKallRZn5ucpJOalKKjElKRWlFQ711bXxlUbWtRCuP5wWgWovji5KDM3My-xBKQpM0_B-VFTs4JPamJZajEPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLwBqTCyqjDcxMrc0MrE0JiANACO_Ry0</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Jim S. Gillon</creator><creator>Yakir, Dan</creator><general>American Society of Plant Physiologists</general><scope/></search><sort><creationdate>20000501</creationdate><title>Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves</title><author>Jim S. Gillon ; Yakir, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_42792493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Carbon dioxide</topic><topic>Carbon isotopes</topic><topic>Chloroplasts</topic><topic>Fractionation</topic><topic>Leaves</topic><topic>Oxygen</topic><topic>Oxygen isotopes</topic><topic>Photosynthesis</topic><topic>Plants</topic><topic>Water vapor</topic><topic>Whole Plant and Ecophysiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jim S. Gillon</creatorcontrib><creatorcontrib>Yakir, Dan</creatorcontrib><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jim S. Gillon</au><au>Yakir, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>123</volume><issue>1</issue><spage>201</spage><epage>213</epage><pages>201-213</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>18O discrimination in CO2 stems from the oxygen exchange between 18O-enriched water and CO2 in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this 18O-labeled CO2 escapes back to the atmosphere, resulting in an effective discrimination against $\text{C}{}^{18}\text{O}\text{O}$ during photosynthesis ($\Delta {}^{18}\text{O}$). By constraining the δ 18O of chloroplast water ($\delta _{\text{e}}$) by analysis of transpired water and the extent of $\text{CO}_{2}-\text{H}_{2}\text{O}$ isotopic equilibrium ($\theta _{\text{eq}}$) by measurements of CA activity ($\theta _{\text{eq}}$ = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured $\Delta {}^{18}\text{O}$ in a leaf cuvette attached to a mass spectrometer to derive the CO2 concentration at the physical limit of CA activity, i.e. the chloroplast surface ($c_{\text{cs}}$). From the CO2 drawdown sequence between stomatal cavities from gas exchange (ci), from $\Delta {}^{18}\text{O}$ ($c_{\text{cs}}$), and at Rubisco sites from $\Delta {}^{13}\text{C}$ ($c_{\text{c}}$), the internal CO2 conductance ($g_{\text{i}}$) was partitioned into cell wall ($g_{\text{w}}$) and chloroplast ($g_{\text{ch}}$) components. The results indicated that $g_{\text{ch}}$ is variable (0.42-1.13 mol m-2 s-1) and proportional to CA activity. We suggest that the influence of CA activity on the CO2 assimilation rate should be important mainly in plants with low internal conductances.</abstract><pub>American Society of Plant Physiologists</pub></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2000-05, Vol.123 (1), p.201-213
issn 0032-0889
1532-2548
language eng
recordid cdi_jstor_primary_4279249
source JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Carbon dioxide
Carbon isotopes
Chloroplasts
Fractionation
Leaves
Oxygen
Oxygen isotopes
Photosynthesis
Plants
Water vapor
Whole Plant and Ecophysiology
title Internal Conductance to CO₂ Diffusion and $\text{C}{}^{18}\text{O}\text{O}$ Discrimination in C₃ Leaves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Conductance%20to%20CO%E2%82%82%20Diffusion%20and%20$%5Ctext%7BC%7D%7B%7D%5E%7B18%7D%5Ctext%7BO%7D%5Ctext%7BO%7D$%20Discrimination%20in%20C%E2%82%83%20Leaves&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Jim%20S.%20Gillon&rft.date=2000-05-01&rft.volume=123&rft.issue=1&rft.spage=201&rft.epage=213&rft.pages=201-213&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/&rft_dat=%3Cjstor%3E4279249%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4279249&rfr_iscdi=true