Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley

Understanding the genetic bases of natural variation for developmental and stress-related traits is a major goal of current plant biology. Variation in plant hormone levels and signaling might underlie such phenotypic variation occurring even within the same species. Here we report the genetic and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-09, Vol.110 (39), p.15818-15823
Hauptverfasser: Barboza, Luis, Effgen, Sigi, Alonso-Blanco, Carlos, Kooke, Rik, Keurentjes, Joost J. B., Koornneef, Maarten, Alcázar, Rubén
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15823
container_issue 39
container_start_page 15818
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Barboza, Luis
Effgen, Sigi
Alonso-Blanco, Carlos
Kooke, Rik
Keurentjes, Joost J. B.
Koornneef, Maarten
Alcázar, Rubén
description Understanding the genetic bases of natural variation for developmental and stress-related traits is a major goal of current plant biology. Variation in plant hormone levels and signaling might underlie such phenotypic variation occurring even within the same species. Here we report the genetic and molecular basis of semidwarf individuals found in natural Arabidopsis thaliana populations. Allelism tests demonstrate that independent loss-of-function mutations at GA locus 5 (GA5), which encodes gibberellin 20-oxidase 1 (GA20ox1) involved in the last steps of gibberellin biosynthesis, are found in different populations from southern, western, and northern Europe; central Asia; and Japan. Sequencing of GA5 identified 21 different loss-of-function alleles causing semidwarfness without any obvious general tradeoff affecting plant performance traits. GA5 shows signatures of purifying selection, whereas GA5 loss-of-function alleles can also exhibit patterns of positive selection in specific populations as shown by Fay and Wu’s H statistics. These results suggest that antagonistic pleiotropy might underlie the occurrence of GA5 loss-of-function mutations in nature. Furthermore, because GA5 is the ortholog of rice SD1 and barley Sdw1/Denso green revolution genes, this study illustrates the occurrence of conserved adaptive evolution between wild A.thaliana and domesticated plants.
doi_str_mv 10.1073/pnas.1314979110
format Article
fullrecord <record><control><sourceid>jstor_wagen</sourceid><recordid>TN_cdi_jstor_primary_42713417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42713417</jstor_id><sourcerecordid>42713417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-fba7add76121aeeb298d49693df0c9e0d5326906a9575ffc879f75226c4697463</originalsourceid><addsrcrecordid>eNqNks2PEyEYhydG49bVsyeVxIsHu8sLDB8eTJqNriabeNA9E2aG6dJQqDDTumf_cZltrR8Xvbwk8PyewMtbVU8BnwEW9HwTTD4DCkwJBYDvVTPACuacKXy_mmFMxFwywk6qRzmvMMaqlvhhdUIYJhRzMau-L5JpXBc32WWU7dp1O5P6jOw2-q3tUJ_iGrnQ2Y0tJQxoPQ5mcDHksosuFwTHb_AaxTTcRB-XaIhomawNKE2GcSLRnRIZ7623d7HkWotM6FBjkre3j6sHvfHZPjmsp9X1-3dfLj7Mrz5dfrxYXM1bjtUw7xsjTNcJDgSMtQ1RsmOKK9r1uFUWdzUlXGFuVC3qvm-lUL2oCeEt40owTk-rN3vvzixtcKEUHUxqXdbROO1dk0y61bsx6eCnZTM2WTOmqJIl_HYfLptr27WlF8l4vUluPYUmwZ8nwd3oZdxqKmS5DxTBq4Mgxa-jzYNeu9xa702wccwaJKYAda34v1HGJAElavYfKBUAnIu6oC__QldxTKF0fKKkVEDwJDzfU22KOSfbH58IWE8zp6eZ079mriSe_96ZI_9zyAqADsCUPOqKjyoNtYSpu8_2yCoPMR0ZRgRQBpPixf68N1GbZSpfdv2ZYOAYAwMpOf0BvALyXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1438891204</pqid></control><display><type>article</type><title>Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Barboza, Luis ; Effgen, Sigi ; Alonso-Blanco, Carlos ; Kooke, Rik ; Keurentjes, Joost J. B. ; Koornneef, Maarten ; Alcázar, Rubén</creator><creatorcontrib>Barboza, Luis ; Effgen, Sigi ; Alonso-Blanco, Carlos ; Kooke, Rik ; Keurentjes, Joost J. B. ; Koornneef, Maarten ; Alcázar, Rubén</creatorcontrib><description>Understanding the genetic bases of natural variation for developmental and stress-related traits is a major goal of current plant biology. Variation in plant hormone levels and signaling might underlie such phenotypic variation occurring even within the same species. Here we report the genetic and molecular basis of semidwarf individuals found in natural Arabidopsis thaliana populations. Allelism tests demonstrate that independent loss-of-function mutations at GA locus 5 (GA5), which encodes gibberellin 20-oxidase 1 (GA20ox1) involved in the last steps of gibberellin biosynthesis, are found in different populations from southern, western, and northern Europe; central Asia; and Japan. Sequencing of GA5 identified 21 different loss-of-function alleles causing semidwarfness without any obvious general tradeoff affecting plant performance traits. GA5 shows signatures of purifying selection, whereas GA5 loss-of-function alleles can also exhibit patterns of positive selection in specific populations as shown by Fay and Wu’s H statistics. These results suggest that antagonistic pleiotropy might underlie the occurrence of GA5 loss-of-function mutations in nature. Furthermore, because GA5 is the ortholog of rice SD1 and barley Sdw1/Denso green revolution genes, this study illustrates the occurrence of conserved adaptive evolution between wild A.thaliana and domesticated plants.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1314979110</identifier><identifier>PMID: 24023067</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>adaptation ; Alleles ; allelism ; Arabidopsis - anatomy &amp; histology ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; association ; Barley ; Biological Evolution ; Biological Sciences ; biosynthesis ; Central Asia ; evolutionary adaptation ; gene ; Genes ; Genetic loci ; Genetic Loci - genetics ; Genetic mutation ; Genetic variation ; Genome-Wide Association Study ; Genotype ; Genotype &amp; phenotype ; Geography ; gibberellin biosynthesis ; Gibberellins ; Haplotypes ; Hordeum - genetics ; Hordeum vulgare ; Hormones ; Japan ; loci ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - metabolism ; Molecular Sequence Data ; Mutation ; Mutation - genetics ; natural variation ; Northern European region ; Oryza - genetics ; Oryza sativa ; Phenotypes ; Phenotypic traits ; phenotypic variation ; Phylogeny ; Plant biology ; plant hormones ; Plants ; pleiotropy ; polymorphism ; Population Dynamics ; populations ; quantitative trait loci ; Rice ; Sequence Homology, Amino Acid ; statistics ; thaliana</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-09, Vol.110 (39), p.15818-15823</ispartof><rights>Copyright National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Sep 24, 2013</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c609t-fba7add76121aeeb298d49693df0c9e0d5326906a9575ffc879f75226c4697463</citedby><cites>FETCH-LOGICAL-c609t-fba7add76121aeeb298d49693df0c9e0d5326906a9575ffc879f75226c4697463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/39.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42713417$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42713417$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24023067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barboza, Luis</creatorcontrib><creatorcontrib>Effgen, Sigi</creatorcontrib><creatorcontrib>Alonso-Blanco, Carlos</creatorcontrib><creatorcontrib>Kooke, Rik</creatorcontrib><creatorcontrib>Keurentjes, Joost J. B.</creatorcontrib><creatorcontrib>Koornneef, Maarten</creatorcontrib><creatorcontrib>Alcázar, Rubén</creatorcontrib><title>Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Understanding the genetic bases of natural variation for developmental and stress-related traits is a major goal of current plant biology. Variation in plant hormone levels and signaling might underlie such phenotypic variation occurring even within the same species. Here we report the genetic and molecular basis of semidwarf individuals found in natural Arabidopsis thaliana populations. Allelism tests demonstrate that independent loss-of-function mutations at GA locus 5 (GA5), which encodes gibberellin 20-oxidase 1 (GA20ox1) involved in the last steps of gibberellin biosynthesis, are found in different populations from southern, western, and northern Europe; central Asia; and Japan. Sequencing of GA5 identified 21 different loss-of-function alleles causing semidwarfness without any obvious general tradeoff affecting plant performance traits. GA5 shows signatures of purifying selection, whereas GA5 loss-of-function alleles can also exhibit patterns of positive selection in specific populations as shown by Fay and Wu’s H statistics. These results suggest that antagonistic pleiotropy might underlie the occurrence of GA5 loss-of-function mutations in nature. Furthermore, because GA5 is the ortholog of rice SD1 and barley Sdw1/Denso green revolution genes, this study illustrates the occurrence of conserved adaptive evolution between wild A.thaliana and domesticated plants.</description><subject>adaptation</subject><subject>Alleles</subject><subject>allelism</subject><subject>Arabidopsis - anatomy &amp; histology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>association</subject><subject>Barley</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>biosynthesis</subject><subject>Central Asia</subject><subject>evolutionary adaptation</subject><subject>gene</subject><subject>Genes</subject><subject>Genetic loci</subject><subject>Genetic Loci - genetics</subject><subject>Genetic mutation</subject><subject>Genetic variation</subject><subject>Genome-Wide Association Study</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Geography</subject><subject>gibberellin biosynthesis</subject><subject>Gibberellins</subject><subject>Haplotypes</subject><subject>Hordeum - genetics</subject><subject>Hordeum vulgare</subject><subject>Hormones</subject><subject>Japan</subject><subject>loci</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>natural variation</subject><subject>Northern European region</subject><subject>Oryza - genetics</subject><subject>Oryza sativa</subject><subject>Phenotypes</subject><subject>Phenotypic traits</subject><subject>phenotypic variation</subject><subject>Phylogeny</subject><subject>Plant biology</subject><subject>plant hormones</subject><subject>Plants</subject><subject>pleiotropy</subject><subject>polymorphism</subject><subject>Population Dynamics</subject><subject>populations</subject><subject>quantitative trait loci</subject><subject>Rice</subject><subject>Sequence Homology, Amino Acid</subject><subject>statistics</subject><subject>thaliana</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks2PEyEYhydG49bVsyeVxIsHu8sLDB8eTJqNriabeNA9E2aG6dJQqDDTumf_cZltrR8Xvbwk8PyewMtbVU8BnwEW9HwTTD4DCkwJBYDvVTPACuacKXy_mmFMxFwywk6qRzmvMMaqlvhhdUIYJhRzMau-L5JpXBc32WWU7dp1O5P6jOw2-q3tUJ_iGrnQ2Y0tJQxoPQ5mcDHksosuFwTHb_AaxTTcRB-XaIhomawNKE2GcSLRnRIZ7623d7HkWotM6FBjkre3j6sHvfHZPjmsp9X1-3dfLj7Mrz5dfrxYXM1bjtUw7xsjTNcJDgSMtQ1RsmOKK9r1uFUWdzUlXGFuVC3qvm-lUL2oCeEt40owTk-rN3vvzixtcKEUHUxqXdbROO1dk0y61bsx6eCnZTM2WTOmqJIl_HYfLptr27WlF8l4vUluPYUmwZ8nwd3oZdxqKmS5DxTBq4Mgxa-jzYNeu9xa702wccwaJKYAda34v1HGJAElavYfKBUAnIu6oC__QldxTKF0fKKkVEDwJDzfU22KOSfbH58IWE8zp6eZ079mriSe_96ZI_9zyAqADsCUPOqKjyoNtYSpu8_2yCoPMR0ZRgRQBpPixf68N1GbZSpfdv2ZYOAYAwMpOf0BvALyXw</recordid><startdate>20130924</startdate><enddate>20130924</enddate><creator>Barboza, Luis</creator><creator>Effgen, Sigi</creator><creator>Alonso-Blanco, Carlos</creator><creator>Kooke, Rik</creator><creator>Keurentjes, Joost J. B.</creator><creator>Koornneef, Maarten</creator><creator>Alcázar, Rubén</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>QVL</scope></search><sort><creationdate>20130924</creationdate><title>Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley</title><author>Barboza, Luis ; Effgen, Sigi ; Alonso-Blanco, Carlos ; Kooke, Rik ; Keurentjes, Joost J. B. ; Koornneef, Maarten ; Alcázar, Rubén</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-fba7add76121aeeb298d49693df0c9e0d5326906a9575ffc879f75226c4697463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adaptation</topic><topic>Alleles</topic><topic>allelism</topic><topic>Arabidopsis - anatomy &amp; histology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>association</topic><topic>Barley</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>biosynthesis</topic><topic>Central Asia</topic><topic>evolutionary adaptation</topic><topic>gene</topic><topic>Genes</topic><topic>Genetic loci</topic><topic>Genetic Loci - genetics</topic><topic>Genetic mutation</topic><topic>Genetic variation</topic><topic>Genome-Wide Association Study</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Geography</topic><topic>gibberellin biosynthesis</topic><topic>Gibberellins</topic><topic>Haplotypes</topic><topic>Hordeum - genetics</topic><topic>Hordeum vulgare</topic><topic>Hormones</topic><topic>Japan</topic><topic>loci</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>natural variation</topic><topic>Northern European region</topic><topic>Oryza - genetics</topic><topic>Oryza sativa</topic><topic>Phenotypes</topic><topic>Phenotypic traits</topic><topic>phenotypic variation</topic><topic>Phylogeny</topic><topic>Plant biology</topic><topic>plant hormones</topic><topic>Plants</topic><topic>pleiotropy</topic><topic>polymorphism</topic><topic>Population Dynamics</topic><topic>populations</topic><topic>quantitative trait loci</topic><topic>Rice</topic><topic>Sequence Homology, Amino Acid</topic><topic>statistics</topic><topic>thaliana</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barboza, Luis</creatorcontrib><creatorcontrib>Effgen, Sigi</creatorcontrib><creatorcontrib>Alonso-Blanco, Carlos</creatorcontrib><creatorcontrib>Kooke, Rik</creatorcontrib><creatorcontrib>Keurentjes, Joost J. B.</creatorcontrib><creatorcontrib>Koornneef, Maarten</creatorcontrib><creatorcontrib>Alcázar, Rubén</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barboza, Luis</au><au>Effgen, Sigi</au><au>Alonso-Blanco, Carlos</au><au>Kooke, Rik</au><au>Keurentjes, Joost J. B.</au><au>Koornneef, Maarten</au><au>Alcázar, Rubén</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-09-24</date><risdate>2013</risdate><volume>110</volume><issue>39</issue><spage>15818</spage><epage>15823</epage><pages>15818-15823</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Understanding the genetic bases of natural variation for developmental and stress-related traits is a major goal of current plant biology. Variation in plant hormone levels and signaling might underlie such phenotypic variation occurring even within the same species. Here we report the genetic and molecular basis of semidwarf individuals found in natural Arabidopsis thaliana populations. Allelism tests demonstrate that independent loss-of-function mutations at GA locus 5 (GA5), which encodes gibberellin 20-oxidase 1 (GA20ox1) involved in the last steps of gibberellin biosynthesis, are found in different populations from southern, western, and northern Europe; central Asia; and Japan. Sequencing of GA5 identified 21 different loss-of-function alleles causing semidwarfness without any obvious general tradeoff affecting plant performance traits. GA5 shows signatures of purifying selection, whereas GA5 loss-of-function alleles can also exhibit patterns of positive selection in specific populations as shown by Fay and Wu’s H statistics. These results suggest that antagonistic pleiotropy might underlie the occurrence of GA5 loss-of-function mutations in nature. Furthermore, because GA5 is the ortholog of rice SD1 and barley Sdw1/Denso green revolution genes, this study illustrates the occurrence of conserved adaptive evolution between wild A.thaliana and domesticated plants.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24023067</pmid><doi>10.1073/pnas.1314979110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-09, Vol.110 (39), p.15818-15823
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_42713417
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects adaptation
Alleles
allelism
Arabidopsis - anatomy & histology
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
association
Barley
Biological Evolution
Biological Sciences
biosynthesis
Central Asia
evolutionary adaptation
gene
Genes
Genetic loci
Genetic Loci - genetics
Genetic mutation
Genetic variation
Genome-Wide Association Study
Genotype
Genotype & phenotype
Geography
gibberellin biosynthesis
Gibberellins
Haplotypes
Hordeum - genetics
Hordeum vulgare
Hormones
Japan
loci
Mixed Function Oxygenases - genetics
Mixed Function Oxygenases - metabolism
Molecular Sequence Data
Mutation
Mutation - genetics
natural variation
Northern European region
Oryza - genetics
Oryza sativa
Phenotypes
Phenotypic traits
phenotypic variation
Phylogeny
Plant biology
plant hormones
Plants
pleiotropy
polymorphism
Population Dynamics
populations
quantitative trait loci
Rice
Sequence Homology, Amino Acid
statistics
thaliana
title Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20semidwarfs%20evolved%20from%20independent%20mutations%20in%20GA20ox1,%20ortholog%20to%20green%20revolution%20dwarf%20alleles%20in%20rice%20and%20barley&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Barboza,%20Luis&rft.date=2013-09-24&rft.volume=110&rft.issue=39&rft.spage=15818&rft.epage=15823&rft.pages=15818-15823&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1314979110&rft_dat=%3Cjstor_wagen%3E42713417%3C/jstor_wagen%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1438891204&rft_id=info:pmid/24023067&rft_jstor_id=42713417&rfr_iscdi=true