Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance

Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proc. Natl. Acad. Sci. USA 2013-07, Vol.110 (29), p.12132-12137
Hauptverfasser: Okamoto, Masanori, Peterson, Francis C., Defries, Andrew, Park, Sang-Youl, Endo, Akira, Nambara, Eiji, Volkman, Brian F., Cutler, Sean R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12137
container_issue 29
container_start_page 12132
container_title Proc. Natl. Acad. Sci. USA
container_volume 110
creator Okamoto, Masanori
Peterson, Francis C.
Defries, Andrew
Park, Sang-Youl
Endo, Akira
Nambara, Eiji
Volkman, Brian F.
Cutler, Sean R.
description Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana . Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis , the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2 . Genetic analyses show that quinabactin’s effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C “lock” hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses.
doi_str_mv 10.1073/pnas.1305919110
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_42712538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42712538</jstor_id><sourcerecordid>42712538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-1ff3811bde69631ce5a57340d453acc6eb84a0795df9c072e061a094d83fdb0b3</originalsourceid><addsrcrecordid>eNpVkc2P0zAQxSMEYkvhzAmw4LrZnbHjJL4glRVf0kocYM-W60xSV2lcbGcF_z0JKQVOPsxv3hu_l2XPEa4QKnF9HEy8QgFSoUKEB9kKQWFeFgoeZisAXuV1wYuL7EmMewBQsobH2QUXNdalqFdZ2tjk7k1yfmC-ZY07UHCWbd5tWCBLx-RDZNQ761Jk3WhCwyz1PbO9j2Ogy5nMA3VjbxI1rKOBGP04BopxkrxkZmhYE_zY7RJLvqdgBktPs0et6SM9O73r7O7D-283n_LbLx8_32xucytrmXJs2-lO3DZUqlKgJWlkJQpoCimMtSVt68JApWTTKgsVJyjRgCqaWrTNFrZinb1ddI_j9kCNpSEF0-tjcAcTfmpvnP5_Mrid7vy9FhXWc77r7PUi4GNyOk4hkN1ZPwxkk56S5iXCBL05uQT_faSY9N6PYZg-prFA5EoKySfqeqFs8DEGas9nIOjZS89d6r9dThsv_73-zP8pbwLYCZg3z3KTHlcaOYrZ9cWC7OPU5JkpeIVc_pZ4tcxb47Xpgov67isHLAFQVFXBxS-pArjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411295352</pqid></control><display><type>article</type><title>Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Okamoto, Masanori ; Peterson, Francis C. ; Defries, Andrew ; Park, Sang-Youl ; Endo, Akira ; Nambara, Eiji ; Volkman, Brian F. ; Cutler, Sean R.</creator><creatorcontrib>Okamoto, Masanori ; Peterson, Francis C. ; Defries, Andrew ; Park, Sang-Youl ; Endo, Akira ; Nambara, Eiji ; Volkman, Brian F. ; Cutler, Sean R. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana . Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis , the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2 . Genetic analyses show that quinabactin’s effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C “lock” hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1305919110</identifier><identifier>PMID: 23818638</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Abiotic stress ; Abscisic Acid - agonists ; Acclimatization - drug effects ; Acclimatization - physiology ; Agonists ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Arabidopsis Proteins - physiology ; Biological Sciences ; Crystal structure ; Crystallography, X-Ray ; Dehydration ; Drought ; Droughts ; Flowers &amp; plants ; Gene Expression Regulation, Plant - drug effects ; Gene Expression Regulation, Plant - physiology ; Guard cells ; High-Throughput Screening Assays ; Hydrogen bonds ; Models, Molecular ; Molecular Structure ; Molecules ; Mutation ; Plant cells ; Plant Leaves - cytology ; Plant Leaves - drug effects ; Plant Leaves - physiology ; Plants ; Quinolones - pharmacology ; Receptors ; Soybeans ; Sulfonamides ; Sulfonamides - pharmacology ; Tissues ; Two-Hybrid System Techniques</subject><ispartof>Proc. Natl. Acad. Sci. USA, 2013-07, Vol.110 (29), p.12132-12137</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 16, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-1ff3811bde69631ce5a57340d453acc6eb84a0795df9c072e061a094d83fdb0b3</citedby><cites>FETCH-LOGICAL-c585t-1ff3811bde69631ce5a57340d453acc6eb84a0795df9c072e061a094d83fdb0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42712538$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42712538$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23818638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1092610$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Okamoto, Masanori</creatorcontrib><creatorcontrib>Peterson, Francis C.</creatorcontrib><creatorcontrib>Defries, Andrew</creatorcontrib><creatorcontrib>Park, Sang-Youl</creatorcontrib><creatorcontrib>Endo, Akira</creatorcontrib><creatorcontrib>Nambara, Eiji</creatorcontrib><creatorcontrib>Volkman, Brian F.</creatorcontrib><creatorcontrib>Cutler, Sean R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance</title><title>Proc. Natl. Acad. Sci. USA</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana . Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis , the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2 . Genetic analyses show that quinabactin’s effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C “lock” hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses.</description><subject>Abiotic stress</subject><subject>Abscisic Acid - agonists</subject><subject>Acclimatization - drug effects</subject><subject>Acclimatization - physiology</subject><subject>Agonists</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Biological Sciences</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Dehydration</subject><subject>Drought</subject><subject>Droughts</subject><subject>Flowers &amp; plants</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Guard cells</subject><subject>High-Throughput Screening Assays</subject><subject>Hydrogen bonds</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Molecules</subject><subject>Mutation</subject><subject>Plant cells</subject><subject>Plant Leaves - cytology</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - physiology</subject><subject>Plants</subject><subject>Quinolones - pharmacology</subject><subject>Receptors</subject><subject>Soybeans</subject><subject>Sulfonamides</subject><subject>Sulfonamides - pharmacology</subject><subject>Tissues</subject><subject>Two-Hybrid System Techniques</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc2P0zAQxSMEYkvhzAmw4LrZnbHjJL4glRVf0kocYM-W60xSV2lcbGcF_z0JKQVOPsxv3hu_l2XPEa4QKnF9HEy8QgFSoUKEB9kKQWFeFgoeZisAXuV1wYuL7EmMewBQsobH2QUXNdalqFdZ2tjk7k1yfmC-ZY07UHCWbd5tWCBLx-RDZNQ761Jk3WhCwyz1PbO9j2Ogy5nMA3VjbxI1rKOBGP04BopxkrxkZmhYE_zY7RJLvqdgBktPs0et6SM9O73r7O7D-283n_LbLx8_32xucytrmXJs2-lO3DZUqlKgJWlkJQpoCimMtSVt68JApWTTKgsVJyjRgCqaWrTNFrZinb1ddI_j9kCNpSEF0-tjcAcTfmpvnP5_Mrid7vy9FhXWc77r7PUi4GNyOk4hkN1ZPwxkk56S5iXCBL05uQT_faSY9N6PYZg-prFA5EoKySfqeqFs8DEGas9nIOjZS89d6r9dThsv_73-zP8pbwLYCZg3z3KTHlcaOYrZ9cWC7OPU5JkpeIVc_pZ4tcxb47Xpgov67isHLAFQVFXBxS-pArjg</recordid><startdate>20130716</startdate><enddate>20130716</enddate><creator>Okamoto, Masanori</creator><creator>Peterson, Francis C.</creator><creator>Defries, Andrew</creator><creator>Park, Sang-Youl</creator><creator>Endo, Akira</creator><creator>Nambara, Eiji</creator><creator>Volkman, Brian F.</creator><creator>Cutler, Sean R.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20130716</creationdate><title>Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance</title><author>Okamoto, Masanori ; Peterson, Francis C. ; Defries, Andrew ; Park, Sang-Youl ; Endo, Akira ; Nambara, Eiji ; Volkman, Brian F. ; Cutler, Sean R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-1ff3811bde69631ce5a57340d453acc6eb84a0795df9c072e061a094d83fdb0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abiotic stress</topic><topic>Abscisic Acid - agonists</topic><topic>Acclimatization - drug effects</topic><topic>Acclimatization - physiology</topic><topic>Agonists</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Biological Sciences</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Dehydration</topic><topic>Drought</topic><topic>Droughts</topic><topic>Flowers &amp; plants</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Guard cells</topic><topic>High-Throughput Screening Assays</topic><topic>Hydrogen bonds</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Molecules</topic><topic>Mutation</topic><topic>Plant cells</topic><topic>Plant Leaves - cytology</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - physiology</topic><topic>Plants</topic><topic>Quinolones - pharmacology</topic><topic>Receptors</topic><topic>Soybeans</topic><topic>Sulfonamides</topic><topic>Sulfonamides - pharmacology</topic><topic>Tissues</topic><topic>Two-Hybrid System Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okamoto, Masanori</creatorcontrib><creatorcontrib>Peterson, Francis C.</creatorcontrib><creatorcontrib>Defries, Andrew</creatorcontrib><creatorcontrib>Park, Sang-Youl</creatorcontrib><creatorcontrib>Endo, Akira</creatorcontrib><creatorcontrib>Nambara, Eiji</creatorcontrib><creatorcontrib>Volkman, Brian F.</creatorcontrib><creatorcontrib>Cutler, Sean R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proc. Natl. Acad. Sci. USA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okamoto, Masanori</au><au>Peterson, Francis C.</au><au>Defries, Andrew</au><au>Park, Sang-Youl</au><au>Endo, Akira</au><au>Nambara, Eiji</au><au>Volkman, Brian F.</au><au>Cutler, Sean R.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance</atitle><jtitle>Proc. Natl. Acad. Sci. USA</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-07-16</date><risdate>2013</risdate><volume>110</volume><issue>29</issue><spage>12132</spage><epage>12137</epage><pages>12132-12137</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana . Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis , the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2 . Genetic analyses show that quinabactin’s effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C “lock” hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23818638</pmid><doi>10.1073/pnas.1305919110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proc. Natl. Acad. Sci. USA, 2013-07, Vol.110 (29), p.12132-12137
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_42712538
source MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection; JSTOR
subjects Abiotic stress
Abscisic Acid - agonists
Acclimatization - drug effects
Acclimatization - physiology
Agonists
Arabidopsis - metabolism
Arabidopsis - physiology
Arabidopsis Proteins - physiology
Biological Sciences
Crystal structure
Crystallography, X-Ray
Dehydration
Drought
Droughts
Flowers & plants
Gene Expression Regulation, Plant - drug effects
Gene Expression Regulation, Plant - physiology
Guard cells
High-Throughput Screening Assays
Hydrogen bonds
Models, Molecular
Molecular Structure
Molecules
Mutation
Plant cells
Plant Leaves - cytology
Plant Leaves - drug effects
Plant Leaves - physiology
Plants
Quinolones - pharmacology
Receptors
Soybeans
Sulfonamides
Sulfonamides - pharmacology
Tissues
Two-Hybrid System Techniques
title Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20dimeric%20ABA%20receptors%20elicits%20guard%20cell%20closure,%20ABA-regulated%20gene%20expression,%20and%20drought%20tolerance&rft.jtitle=Proc.%20Natl.%20Acad.%20Sci.%20USA&rft.au=Okamoto,%20Masanori&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2013-07-16&rft.volume=110&rft.issue=29&rft.spage=12132&rft.epage=12137&rft.pages=12132-12137&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1305919110&rft_dat=%3Cjstor_proqu%3E42712538%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1411295352&rft_id=info:pmid/23818638&rft_jstor_id=42712538&rfr_iscdi=true