Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance
Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnR...
Gespeichert in:
Veröffentlicht in: | Proc. Natl. Acad. Sci. USA 2013-07, Vol.110 (29), p.12132-12137 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12137 |
---|---|
container_issue | 29 |
container_start_page | 12132 |
container_title | Proc. Natl. Acad. Sci. USA |
container_volume | 110 |
creator | Okamoto, Masanori Peterson, Francis C. Defries, Andrew Park, Sang-Youl Endo, Akira Nambara, Eiji Volkman, Brian F. Cutler, Sean R. |
description | Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana . Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis , the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2 . Genetic analyses show that quinabactin’s effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C “lock” hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses. |
doi_str_mv | 10.1073/pnas.1305919110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_42712538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42712538</jstor_id><sourcerecordid>42712538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-1ff3811bde69631ce5a57340d453acc6eb84a0795df9c072e061a094d83fdb0b3</originalsourceid><addsrcrecordid>eNpVkc2P0zAQxSMEYkvhzAmw4LrZnbHjJL4glRVf0kocYM-W60xSV2lcbGcF_z0JKQVOPsxv3hu_l2XPEa4QKnF9HEy8QgFSoUKEB9kKQWFeFgoeZisAXuV1wYuL7EmMewBQsobH2QUXNdalqFdZ2tjk7k1yfmC-ZY07UHCWbd5tWCBLx-RDZNQ761Jk3WhCwyz1PbO9j2Ogy5nMA3VjbxI1rKOBGP04BopxkrxkZmhYE_zY7RJLvqdgBktPs0et6SM9O73r7O7D-283n_LbLx8_32xucytrmXJs2-lO3DZUqlKgJWlkJQpoCimMtSVt68JApWTTKgsVJyjRgCqaWrTNFrZinb1ddI_j9kCNpSEF0-tjcAcTfmpvnP5_Mrid7vy9FhXWc77r7PUi4GNyOk4hkN1ZPwxkk56S5iXCBL05uQT_faSY9N6PYZg-prFA5EoKySfqeqFs8DEGas9nIOjZS89d6r9dThsv_73-zP8pbwLYCZg3z3KTHlcaOYrZ9cWC7OPU5JkpeIVc_pZ4tcxb47Xpgov67isHLAFQVFXBxS-pArjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411295352</pqid></control><display><type>article</type><title>Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Okamoto, Masanori ; Peterson, Francis C. ; Defries, Andrew ; Park, Sang-Youl ; Endo, Akira ; Nambara, Eiji ; Volkman, Brian F. ; Cutler, Sean R.</creator><creatorcontrib>Okamoto, Masanori ; Peterson, Francis C. ; Defries, Andrew ; Park, Sang-Youl ; Endo, Akira ; Nambara, Eiji ; Volkman, Brian F. ; Cutler, Sean R. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana . Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis , the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2 . Genetic analyses show that quinabactin’s effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C “lock” hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1305919110</identifier><identifier>PMID: 23818638</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Abiotic stress ; Abscisic Acid - agonists ; Acclimatization - drug effects ; Acclimatization - physiology ; Agonists ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Arabidopsis Proteins - physiology ; Biological Sciences ; Crystal structure ; Crystallography, X-Ray ; Dehydration ; Drought ; Droughts ; Flowers & plants ; Gene Expression Regulation, Plant - drug effects ; Gene Expression Regulation, Plant - physiology ; Guard cells ; High-Throughput Screening Assays ; Hydrogen bonds ; Models, Molecular ; Molecular Structure ; Molecules ; Mutation ; Plant cells ; Plant Leaves - cytology ; Plant Leaves - drug effects ; Plant Leaves - physiology ; Plants ; Quinolones - pharmacology ; Receptors ; Soybeans ; Sulfonamides ; Sulfonamides - pharmacology ; Tissues ; Two-Hybrid System Techniques</subject><ispartof>Proc. Natl. Acad. Sci. USA, 2013-07, Vol.110 (29), p.12132-12137</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 16, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-1ff3811bde69631ce5a57340d453acc6eb84a0795df9c072e061a094d83fdb0b3</citedby><cites>FETCH-LOGICAL-c585t-1ff3811bde69631ce5a57340d453acc6eb84a0795df9c072e061a094d83fdb0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42712538$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42712538$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23818638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1092610$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Okamoto, Masanori</creatorcontrib><creatorcontrib>Peterson, Francis C.</creatorcontrib><creatorcontrib>Defries, Andrew</creatorcontrib><creatorcontrib>Park, Sang-Youl</creatorcontrib><creatorcontrib>Endo, Akira</creatorcontrib><creatorcontrib>Nambara, Eiji</creatorcontrib><creatorcontrib>Volkman, Brian F.</creatorcontrib><creatorcontrib>Cutler, Sean R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance</title><title>Proc. Natl. Acad. Sci. USA</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana . Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis , the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2 . Genetic analyses show that quinabactin’s effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C “lock” hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses.</description><subject>Abiotic stress</subject><subject>Abscisic Acid - agonists</subject><subject>Acclimatization - drug effects</subject><subject>Acclimatization - physiology</subject><subject>Agonists</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Biological Sciences</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Dehydration</subject><subject>Drought</subject><subject>Droughts</subject><subject>Flowers & plants</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Guard cells</subject><subject>High-Throughput Screening Assays</subject><subject>Hydrogen bonds</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Molecules</subject><subject>Mutation</subject><subject>Plant cells</subject><subject>Plant Leaves - cytology</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - physiology</subject><subject>Plants</subject><subject>Quinolones - pharmacology</subject><subject>Receptors</subject><subject>Soybeans</subject><subject>Sulfonamides</subject><subject>Sulfonamides - pharmacology</subject><subject>Tissues</subject><subject>Two-Hybrid System Techniques</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc2P0zAQxSMEYkvhzAmw4LrZnbHjJL4glRVf0kocYM-W60xSV2lcbGcF_z0JKQVOPsxv3hu_l2XPEa4QKnF9HEy8QgFSoUKEB9kKQWFeFgoeZisAXuV1wYuL7EmMewBQsobH2QUXNdalqFdZ2tjk7k1yfmC-ZY07UHCWbd5tWCBLx-RDZNQ761Jk3WhCwyz1PbO9j2Ogy5nMA3VjbxI1rKOBGP04BopxkrxkZmhYE_zY7RJLvqdgBktPs0et6SM9O73r7O7D-283n_LbLx8_32xucytrmXJs2-lO3DZUqlKgJWlkJQpoCimMtSVt68JApWTTKgsVJyjRgCqaWrTNFrZinb1ddI_j9kCNpSEF0-tjcAcTfmpvnP5_Mrid7vy9FhXWc77r7PUi4GNyOk4hkN1ZPwxkk56S5iXCBL05uQT_faSY9N6PYZg-prFA5EoKySfqeqFs8DEGas9nIOjZS89d6r9dThsv_73-zP8pbwLYCZg3z3KTHlcaOYrZ9cWC7OPU5JkpeIVc_pZ4tcxb47Xpgov67isHLAFQVFXBxS-pArjg</recordid><startdate>20130716</startdate><enddate>20130716</enddate><creator>Okamoto, Masanori</creator><creator>Peterson, Francis C.</creator><creator>Defries, Andrew</creator><creator>Park, Sang-Youl</creator><creator>Endo, Akira</creator><creator>Nambara, Eiji</creator><creator>Volkman, Brian F.</creator><creator>Cutler, Sean R.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20130716</creationdate><title>Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance</title><author>Okamoto, Masanori ; Peterson, Francis C. ; Defries, Andrew ; Park, Sang-Youl ; Endo, Akira ; Nambara, Eiji ; Volkman, Brian F. ; Cutler, Sean R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-1ff3811bde69631ce5a57340d453acc6eb84a0795df9c072e061a094d83fdb0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abiotic stress</topic><topic>Abscisic Acid - agonists</topic><topic>Acclimatization - drug effects</topic><topic>Acclimatization - physiology</topic><topic>Agonists</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Biological Sciences</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Dehydration</topic><topic>Drought</topic><topic>Droughts</topic><topic>Flowers & plants</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Guard cells</topic><topic>High-Throughput Screening Assays</topic><topic>Hydrogen bonds</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Molecules</topic><topic>Mutation</topic><topic>Plant cells</topic><topic>Plant Leaves - cytology</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - physiology</topic><topic>Plants</topic><topic>Quinolones - pharmacology</topic><topic>Receptors</topic><topic>Soybeans</topic><topic>Sulfonamides</topic><topic>Sulfonamides - pharmacology</topic><topic>Tissues</topic><topic>Two-Hybrid System Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okamoto, Masanori</creatorcontrib><creatorcontrib>Peterson, Francis C.</creatorcontrib><creatorcontrib>Defries, Andrew</creatorcontrib><creatorcontrib>Park, Sang-Youl</creatorcontrib><creatorcontrib>Endo, Akira</creatorcontrib><creatorcontrib>Nambara, Eiji</creatorcontrib><creatorcontrib>Volkman, Brian F.</creatorcontrib><creatorcontrib>Cutler, Sean R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proc. Natl. Acad. Sci. USA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okamoto, Masanori</au><au>Peterson, Francis C.</au><au>Defries, Andrew</au><au>Park, Sang-Youl</au><au>Endo, Akira</au><au>Nambara, Eiji</au><au>Volkman, Brian F.</au><au>Cutler, Sean R.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance</atitle><jtitle>Proc. Natl. Acad. Sci. USA</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-07-16</date><risdate>2013</risdate><volume>110</volume><issue>29</issue><spage>12132</spage><epage>12137</epage><pages>12132-12137</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana . Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis , the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2 . Genetic analyses show that quinabactin’s effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C “lock” hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23818638</pmid><doi>10.1073/pnas.1305919110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proc. Natl. Acad. Sci. USA, 2013-07, Vol.110 (29), p.12132-12137 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_42712538 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection; JSTOR |
subjects | Abiotic stress Abscisic Acid - agonists Acclimatization - drug effects Acclimatization - physiology Agonists Arabidopsis - metabolism Arabidopsis - physiology Arabidopsis Proteins - physiology Biological Sciences Crystal structure Crystallography, X-Ray Dehydration Drought Droughts Flowers & plants Gene Expression Regulation, Plant - drug effects Gene Expression Regulation, Plant - physiology Guard cells High-Throughput Screening Assays Hydrogen bonds Models, Molecular Molecular Structure Molecules Mutation Plant cells Plant Leaves - cytology Plant Leaves - drug effects Plant Leaves - physiology Plants Quinolones - pharmacology Receptors Soybeans Sulfonamides Sulfonamides - pharmacology Tissues Two-Hybrid System Techniques |
title | Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20dimeric%20ABA%20receptors%20elicits%20guard%20cell%20closure,%20ABA-regulated%20gene%20expression,%20and%20drought%20tolerance&rft.jtitle=Proc.%20Natl.%20Acad.%20Sci.%20USA&rft.au=Okamoto,%20Masanori&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2013-07-16&rft.volume=110&rft.issue=29&rft.spage=12132&rft.epage=12137&rft.pages=12132-12137&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1305919110&rft_dat=%3Cjstor_proqu%3E42712538%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1411295352&rft_id=info:pmid/23818638&rft_jstor_id=42712538&rfr_iscdi=true |