Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action
Sucrose nonfermenting 1 (SNFI)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-medi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-07, Vol.110 (27), p.11205-11210 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11210 |
---|---|
container_issue | 27 |
container_start_page | 11205 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Wang, Pengcheng Xue, Liang Batelli, Giorgia Lee, Shinyoung Hou, Yueh-Ju Van Oosten, Michael J. Zhang, Huiming Tao, W. Andy Zhu, Jian-Kang |
description | Sucrose nonfermenting 1 (SNFI)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments. |
doi_str_mv | 10.1073/pnas.1308974110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_42706399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42706399</jstor_id><sourcerecordid>42706399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-54360380ce662e30afc2d8e105e5744696b1647adfc8baa5ef01e33cb1f064443</originalsourceid><addsrcrecordid>eNpdkcurEzEUxoMo3lpdu1ICbtzMvSePSSYbQS6-8IL4Wg-ZzIlNbSc1yRTEf97U1vqAJGfx_c6Xc_gIecjgkoEWV7vJ5ksmoDNaMga3yIKBYY2SBm6TBQDXTSe5vCD3cl4DgGk7uEsuuNBaccYX5Mf72U4lFFvCHuluFXO9uxQLxm1wmYYRq-wDZvpx-vCW019amOjXUL9Gmuchl2RL1e000oR7tJtMywopeo-uxJRp9NQO2YUcHLUujPUpIU73yR1fYXxwqkvy-eWLT9evm5t3r95cP79pXCtkaVopFIgOHCrFUYD1jo8dMmix1VIqowampLajd91gbYseGArhBuZBSSnFkjw7-u7mYYujqxslu-l3KWxt-t5HG_p_lSms-i9x3wsNwnS8Gjw9GaT4bcZc-m3IDjcbO2Gcc8-EEbozop4lefIfuo5zmup6B8owoxnTlbo6Ui7FnBP68zAM-kOw_SHY_k-wtePx3zuc-d9JVoCegEPn2a76cV0Lh7Yij47IOtdYzozkGlSdTfwEcYO14A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399197117</pqid></control><display><type>article</type><title>Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Wang, Pengcheng ; Xue, Liang ; Batelli, Giorgia ; Lee, Shinyoung ; Hou, Yueh-Ju ; Van Oosten, Michael J. ; Zhang, Huiming ; Tao, W. Andy ; Zhu, Jian-Kang</creator><creatorcontrib>Wang, Pengcheng ; Xue, Liang ; Batelli, Giorgia ; Lee, Shinyoung ; Hou, Yueh-Ju ; Van Oosten, Michael J. ; Zhang, Huiming ; Tao, W. Andy ; Zhu, Jian-Kang</creatorcontrib><description>Sucrose nonfermenting 1 (SNFI)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1308974110</identifier><identifier>PMID: 23776212</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Abscisic acid ; Abscisic Acid - metabolism ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological Sciences ; Chloroplasts ; Chloroplasts - genetics ; Chloroplasts - metabolism ; Datasets ; Epigenesis, Genetic ; Flowering ; Flowers - growth & development ; Flowers - metabolism ; Gene expression regulation ; Genes, Plant ; Kinases ; MicroRNA ; Mutation ; Peptides ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Phosphorylation ; Plant cells ; Plant growth regulators ; Plant Growth Regulators - genetics ; Plant Growth Regulators - metabolism ; Plants ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proteomics ; Proteomics - methods ; RNA-protein interactions ; Signal transduction ; Signal Transduction - genetics ; Substrate Specificity - genetics ; Transcriptional regulatory elements</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (27), p.11205-11210</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 2, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-54360380ce662e30afc2d8e105e5744696b1647adfc8baa5ef01e33cb1f064443</citedby><cites>FETCH-LOGICAL-c534t-54360380ce662e30afc2d8e105e5744696b1647adfc8baa5ef01e33cb1f064443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42706399$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42706399$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23776212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Pengcheng</creatorcontrib><creatorcontrib>Xue, Liang</creatorcontrib><creatorcontrib>Batelli, Giorgia</creatorcontrib><creatorcontrib>Lee, Shinyoung</creatorcontrib><creatorcontrib>Hou, Yueh-Ju</creatorcontrib><creatorcontrib>Van Oosten, Michael J.</creatorcontrib><creatorcontrib>Zhang, Huiming</creatorcontrib><creatorcontrib>Tao, W. Andy</creatorcontrib><creatorcontrib>Zhu, Jian-Kang</creatorcontrib><title>Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Sucrose nonfermenting 1 (SNFI)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments.</description><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Chloroplasts</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - metabolism</subject><subject>Datasets</subject><subject>Epigenesis, Genetic</subject><subject>Flowering</subject><subject>Flowers - growth & development</subject><subject>Flowers - metabolism</subject><subject>Gene expression regulation</subject><subject>Genes, Plant</subject><subject>Kinases</subject><subject>MicroRNA</subject><subject>Mutation</subject><subject>Peptides</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation</subject><subject>Plant cells</subject><subject>Plant growth regulators</subject><subject>Plant Growth Regulators - genetics</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plants</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>RNA-protein interactions</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Substrate Specificity - genetics</subject><subject>Transcriptional regulatory elements</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcurEzEUxoMo3lpdu1ICbtzMvSePSSYbQS6-8IL4Wg-ZzIlNbSc1yRTEf97U1vqAJGfx_c6Xc_gIecjgkoEWV7vJ5ksmoDNaMga3yIKBYY2SBm6TBQDXTSe5vCD3cl4DgGk7uEsuuNBaccYX5Mf72U4lFFvCHuluFXO9uxQLxm1wmYYRq-wDZvpx-vCW019amOjXUL9Gmuchl2RL1e000oR7tJtMywopeo-uxJRp9NQO2YUcHLUujPUpIU73yR1fYXxwqkvy-eWLT9evm5t3r95cP79pXCtkaVopFIgOHCrFUYD1jo8dMmix1VIqowampLajd91gbYseGArhBuZBSSnFkjw7-u7mYYujqxslu-l3KWxt-t5HG_p_lSms-i9x3wsNwnS8Gjw9GaT4bcZc-m3IDjcbO2Gcc8-EEbozop4lefIfuo5zmup6B8owoxnTlbo6Ui7FnBP68zAM-kOw_SHY_k-wtePx3zuc-d9JVoCegEPn2a76cV0Lh7Yij47IOtdYzozkGlSdTfwEcYO14A</recordid><startdate>20130702</startdate><enddate>20130702</enddate><creator>Wang, Pengcheng</creator><creator>Xue, Liang</creator><creator>Batelli, Giorgia</creator><creator>Lee, Shinyoung</creator><creator>Hou, Yueh-Ju</creator><creator>Van Oosten, Michael J.</creator><creator>Zhang, Huiming</creator><creator>Tao, W. Andy</creator><creator>Zhu, Jian-Kang</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130702</creationdate><title>Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action</title><author>Wang, Pengcheng ; Xue, Liang ; Batelli, Giorgia ; Lee, Shinyoung ; Hou, Yueh-Ju ; Van Oosten, Michael J. ; Zhang, Huiming ; Tao, W. Andy ; Zhu, Jian-Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-54360380ce662e30afc2d8e105e5744696b1647adfc8baa5ef01e33cb1f064443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Chloroplasts</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - metabolism</topic><topic>Datasets</topic><topic>Epigenesis, Genetic</topic><topic>Flowering</topic><topic>Flowers - growth & development</topic><topic>Flowers - metabolism</topic><topic>Gene expression regulation</topic><topic>Genes, Plant</topic><topic>Kinases</topic><topic>MicroRNA</topic><topic>Mutation</topic><topic>Peptides</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation</topic><topic>Plant cells</topic><topic>Plant growth regulators</topic><topic>Plant Growth Regulators - genetics</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plants</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>RNA-protein interactions</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Substrate Specificity - genetics</topic><topic>Transcriptional regulatory elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Pengcheng</creatorcontrib><creatorcontrib>Xue, Liang</creatorcontrib><creatorcontrib>Batelli, Giorgia</creatorcontrib><creatorcontrib>Lee, Shinyoung</creatorcontrib><creatorcontrib>Hou, Yueh-Ju</creatorcontrib><creatorcontrib>Van Oosten, Michael J.</creatorcontrib><creatorcontrib>Zhang, Huiming</creatorcontrib><creatorcontrib>Tao, W. Andy</creatorcontrib><creatorcontrib>Zhu, Jian-Kang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Pengcheng</au><au>Xue, Liang</au><au>Batelli, Giorgia</au><au>Lee, Shinyoung</au><au>Hou, Yueh-Ju</au><au>Van Oosten, Michael J.</au><au>Zhang, Huiming</au><au>Tao, W. Andy</au><au>Zhu, Jian-Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-07-02</date><risdate>2013</risdate><volume>110</volume><issue>27</issue><spage>11205</spage><epage>11210</epage><pages>11205-11210</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Sucrose nonfermenting 1 (SNFI)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23776212</pmid><doi>10.1073/pnas.1308974110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (27), p.11205-11210 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_42706399 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection; JSTOR |
subjects | Abscisic acid Abscisic Acid - metabolism Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biological Sciences Chloroplasts Chloroplasts - genetics Chloroplasts - metabolism Datasets Epigenesis, Genetic Flowering Flowers - growth & development Flowers - metabolism Gene expression regulation Genes, Plant Kinases MicroRNA Mutation Peptides Phosphoproteins - genetics Phosphoproteins - metabolism Phosphorylation Plant cells Plant growth regulators Plant Growth Regulators - genetics Plant Growth Regulators - metabolism Plants Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Proteomics Proteomics - methods RNA-protein interactions Signal transduction Signal Transduction - genetics Substrate Specificity - genetics Transcriptional regulatory elements |
title | Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20phosphoproteomics%20identifies%20SnRK2%20protein%20kinase%20substrates%20and%20reveals%20the%20effectors%20of%20abscisic%20acid%20action&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Pengcheng&rft.date=2013-07-02&rft.volume=110&rft.issue=27&rft.spage=11205&rft.epage=11210&rft.pages=11205-11210&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1308974110&rft_dat=%3Cjstor_pubme%3E42706399%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1399197117&rft_id=info:pmid/23776212&rft_jstor_id=42706399&rfr_iscdi=true |