Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity

Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-05, Vol.110 (20), p.8014-8019
Hauptverfasser: Renbaum-Wolff, Lindsay, Grayson, James W., Bateman, Adam P., Kuwata, Mikinori, Sellier, Mathieu, Murray, Benjamin J., Shilling, John E., Martin, Scot T., Bertram, Allan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8019
container_issue 20
container_start_page 8014
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Renbaum-Wolff, Lindsay
Grayson, James W.
Bateman, Adam P.
Kuwata, Mikinori
Sellier, Mathieu
Murray, Benjamin J.
Shilling, John E.
Martin, Scot T.
Bertram, Allan K.
description Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a “bead-mobility” technique and a “poke-flow” technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by α -pinene ozonolysis is quantified for 20- to 50-μm particles at 293–295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ≤30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ≤ 30%; (ii) at ≤30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate.
doi_str_mv 10.1073/pnas.1219548110
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_jstor_primary_42656628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42656628</jstor_id><sourcerecordid>42656628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-c0a590726fdb17c9d76e1d3b99692e3a92e2e79bd7aa805d437718b96eb83dcf3</originalsourceid><addsrcrecordid>eNpVkc2KFDEUhYMoTju6dqUWgsuaufmppLIRZPAPBlzouA23UqnuDNVJkcQRH8sX8ZlM2223bhLI_XLOvfcQ8pTCBQXFL5eA-YIyqjvRUwr3yIqCpq0UGu6TFQBTbS-YOCOPcr4FAN318JCcMS4ZdAxWxH312cbsy48mTs2vn-3igwuuyc7GMGKqz2mNwdtmi8Ulj3ODYWz8dpm9xeJjyM0UU7NgKt7Orlmn-L1s_kDJoS3-rmo_Jg8mnLN7crjPyc27t1-uPrTXn95_vHpz3VrRQWktYKdBMTmNA1VWj0o6OvJBa6mZ41gP5pQeRoXYQzcKrhTtBy3d0PPRTvycvN7rLt-GrRutCyXhbJbkt3UUE9Gb_yvBb8w63hkuO9UzWgVe7gViLt5k64uzm7qJ4GwxFHrOdVehyz1kU8w5ueloQMHsYjG7WMwplvrj-b99Hfm_OVTg1QHAbHGeEgbr84lTXGhOd_29OHA7h6Nt9WVgeqCiEs_2xG0uMR0RwWQnJetPChNGg-tUXW4-M6ASgHKpQfDfFoW2TQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Renbaum-Wolff, Lindsay ; Grayson, James W. ; Bateman, Adam P. ; Kuwata, Mikinori ; Sellier, Mathieu ; Murray, Benjamin J. ; Shilling, John E. ; Martin, Scot T. ; Bertram, Allan K.</creator><creatorcontrib>Renbaum-Wolff, Lindsay ; Grayson, James W. ; Bateman, Adam P. ; Kuwata, Mikinori ; Sellier, Mathieu ; Murray, Benjamin J. ; Shilling, John E. ; Martin, Scot T. ; Bertram, Allan K. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a “bead-mobility” technique and a “poke-flow” technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by α -pinene ozonolysis is quantified for 20- to 50-μm particles at 293–295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ≤30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ≤ 30%; (ii) at ≤30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1219548110</identifier><identifier>PMID: 23620520</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences</publisher><subject>Aerosols ; Air Pollutants ; Applied sciences ; Atmosphere ; Atmospheric pollution ; Atmospherics ; Bicyclic Monoterpenes ; Climate ; Diffusion coefficient ; Earth, ocean, space ; Environmental Monitoring - methods ; Exact sciences and technology ; External geophysics ; Gases ; Liquids ; Meteorology ; Molecules ; Monoterpenes - chemistry ; Nitrogen - chemistry ; Organic materials ; Oxygen - chemistry ; Ozone - chemistry ; Particle diffusion ; Particle mass ; Particle Size ; Particles and aerosols ; Physical Sciences ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; Relative humidity ; Solubility ; Temperature ; Viscosity ; Volatile Organic Compounds ; Volatilization ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (20), p.8014-8019</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-c0a590726fdb17c9d76e1d3b99692e3a92e2e79bd7aa805d437718b96eb83dcf3</citedby><cites>FETCH-LOGICAL-c450t-c0a590726fdb17c9d76e1d3b99692e3a92e2e79bd7aa805d437718b96eb83dcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42656628$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42656628$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27349311$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23620520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1083395$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Renbaum-Wolff, Lindsay</creatorcontrib><creatorcontrib>Grayson, James W.</creatorcontrib><creatorcontrib>Bateman, Adam P.</creatorcontrib><creatorcontrib>Kuwata, Mikinori</creatorcontrib><creatorcontrib>Sellier, Mathieu</creatorcontrib><creatorcontrib>Murray, Benjamin J.</creatorcontrib><creatorcontrib>Shilling, John E.</creatorcontrib><creatorcontrib>Martin, Scot T.</creatorcontrib><creatorcontrib>Bertram, Allan K.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a “bead-mobility” technique and a “poke-flow” technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by α -pinene ozonolysis is quantified for 20- to 50-μm particles at 293–295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ≤30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ≤ 30%; (ii) at ≤30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate.</description><subject>Aerosols</subject><subject>Air Pollutants</subject><subject>Applied sciences</subject><subject>Atmosphere</subject><subject>Atmospheric pollution</subject><subject>Atmospherics</subject><subject>Bicyclic Monoterpenes</subject><subject>Climate</subject><subject>Diffusion coefficient</subject><subject>Earth, ocean, space</subject><subject>Environmental Monitoring - methods</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Gases</subject><subject>Liquids</subject><subject>Meteorology</subject><subject>Molecules</subject><subject>Monoterpenes - chemistry</subject><subject>Nitrogen - chemistry</subject><subject>Organic materials</subject><subject>Oxygen - chemistry</subject><subject>Ozone - chemistry</subject><subject>Particle diffusion</subject><subject>Particle mass</subject><subject>Particle Size</subject><subject>Particles and aerosols</subject><subject>Physical Sciences</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><subject>Relative humidity</subject><subject>Solubility</subject><subject>Temperature</subject><subject>Viscosity</subject><subject>Volatile Organic Compounds</subject><subject>Volatilization</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc2KFDEUhYMoTju6dqUWgsuaufmppLIRZPAPBlzouA23UqnuDNVJkcQRH8sX8ZlM2223bhLI_XLOvfcQ8pTCBQXFL5eA-YIyqjvRUwr3yIqCpq0UGu6TFQBTbS-YOCOPcr4FAN318JCcMS4ZdAxWxH312cbsy48mTs2vn-3igwuuyc7GMGKqz2mNwdtmi8Ulj3ODYWz8dpm9xeJjyM0UU7NgKt7Orlmn-L1s_kDJoS3-rmo_Jg8mnLN7crjPyc27t1-uPrTXn95_vHpz3VrRQWktYKdBMTmNA1VWj0o6OvJBa6mZ41gP5pQeRoXYQzcKrhTtBy3d0PPRTvycvN7rLt-GrRutCyXhbJbkt3UUE9Gb_yvBb8w63hkuO9UzWgVe7gViLt5k64uzm7qJ4GwxFHrOdVehyz1kU8w5ueloQMHsYjG7WMwplvrj-b99Hfm_OVTg1QHAbHGeEgbr84lTXGhOd_29OHA7h6Nt9WVgeqCiEs_2xG0uMR0RwWQnJetPChNGg-tUXW4-M6ASgHKpQfDfFoW2TQ</recordid><startdate>20130514</startdate><enddate>20130514</enddate><creator>Renbaum-Wolff, Lindsay</creator><creator>Grayson, James W.</creator><creator>Bateman, Adam P.</creator><creator>Kuwata, Mikinori</creator><creator>Sellier, Mathieu</creator><creator>Murray, Benjamin J.</creator><creator>Shilling, John E.</creator><creator>Martin, Scot T.</creator><creator>Bertram, Allan K.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20130514</creationdate><title>Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity</title><author>Renbaum-Wolff, Lindsay ; Grayson, James W. ; Bateman, Adam P. ; Kuwata, Mikinori ; Sellier, Mathieu ; Murray, Benjamin J. ; Shilling, John E. ; Martin, Scot T. ; Bertram, Allan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-c0a590726fdb17c9d76e1d3b99692e3a92e2e79bd7aa805d437718b96eb83dcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerosols</topic><topic>Air Pollutants</topic><topic>Applied sciences</topic><topic>Atmosphere</topic><topic>Atmospheric pollution</topic><topic>Atmospherics</topic><topic>Bicyclic Monoterpenes</topic><topic>Climate</topic><topic>Diffusion coefficient</topic><topic>Earth, ocean, space</topic><topic>Environmental Monitoring - methods</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Gases</topic><topic>Liquids</topic><topic>Meteorology</topic><topic>Molecules</topic><topic>Monoterpenes - chemistry</topic><topic>Nitrogen - chemistry</topic><topic>Organic materials</topic><topic>Oxygen - chemistry</topic><topic>Ozone - chemistry</topic><topic>Particle diffusion</topic><topic>Particle mass</topic><topic>Particle Size</topic><topic>Particles and aerosols</topic><topic>Physical Sciences</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><topic>Relative humidity</topic><topic>Solubility</topic><topic>Temperature</topic><topic>Viscosity</topic><topic>Volatile Organic Compounds</topic><topic>Volatilization</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renbaum-Wolff, Lindsay</creatorcontrib><creatorcontrib>Grayson, James W.</creatorcontrib><creatorcontrib>Bateman, Adam P.</creatorcontrib><creatorcontrib>Kuwata, Mikinori</creatorcontrib><creatorcontrib>Sellier, Mathieu</creatorcontrib><creatorcontrib>Murray, Benjamin J.</creatorcontrib><creatorcontrib>Shilling, John E.</creatorcontrib><creatorcontrib>Martin, Scot T.</creatorcontrib><creatorcontrib>Bertram, Allan K.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renbaum-Wolff, Lindsay</au><au>Grayson, James W.</au><au>Bateman, Adam P.</au><au>Kuwata, Mikinori</au><au>Sellier, Mathieu</au><au>Murray, Benjamin J.</au><au>Shilling, John E.</au><au>Martin, Scot T.</au><au>Bertram, Allan K.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-05-14</date><risdate>2013</risdate><volume>110</volume><issue>20</issue><spage>8014</spage><epage>8019</epage><pages>8014-8019</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a “bead-mobility” technique and a “poke-flow” technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by α -pinene ozonolysis is quantified for 20- to 50-μm particles at 293–295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ≤30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ≤ 30%; (ii) at ≤30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences</pub><pmid>23620520</pmid><doi>10.1073/pnas.1219548110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (20), p.8014-8019
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_42656628
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Aerosols
Air Pollutants
Applied sciences
Atmosphere
Atmospheric pollution
Atmospherics
Bicyclic Monoterpenes
Climate
Diffusion coefficient
Earth, ocean, space
Environmental Monitoring - methods
Exact sciences and technology
External geophysics
Gases
Liquids
Meteorology
Molecules
Monoterpenes - chemistry
Nitrogen - chemistry
Organic materials
Oxygen - chemistry
Ozone - chemistry
Particle diffusion
Particle mass
Particle Size
Particles and aerosols
Physical Sciences
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
Relative humidity
Solubility
Temperature
Viscosity
Volatile Organic Compounds
Volatilization
Water - chemistry
title Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscosity%20of%20%CE%B1-pinene%20secondary%20organic%20material%20and%20implications%20for%20particle%20growth%20and%20reactivity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Renbaum-Wolff,%20Lindsay&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2013-05-14&rft.volume=110&rft.issue=20&rft.spage=8014&rft.epage=8019&rft.pages=8014-8019&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.1219548110&rft_dat=%3Cjstor_osti_%3E42656628%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23620520&rft_jstor_id=42656628&rfr_iscdi=true