Mechanism for adaptive remodeling of the bacterial flagellar switch

The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-12, Vol.109 (49), p.20018-20022
Hauptverfasser: Lele, Pushkar P, Branch, Richard W, Nathan, Vedhavalli S. J, Berg, Howard C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20022
container_issue 49
container_start_page 20018
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Lele, Pushkar P
Branch, Richard W
Nathan, Vedhavalli S. J
Berg, Howard C
description The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange depend on the direction of flagellar rotation, not on CheY-P binding per se. Our results are consistent with a model in which the structural differences associated with the direction of rotation modulate the strength of FliM binding. When the motor spins counterclockwise, FliM binding strengthens, the fraction of FliM molecules that exchanges decreases, and the ring content increases. The larger number of CheY-P binding sites enhances the motor’s sensitivity, i.e., the motor adapts. An interesting unresolved question is how additional copies of FliM might be accommodated.
doi_str_mv 10.1073/pnas.1212327109
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_jstor_primary_41830458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830458</jstor_id><sourcerecordid>41830458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-5cf813c69363f7c6c69ac7a6c355235554bb59ec50942345655983304ae56cb33</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EoqFw5gSsxIXLtjP-WvuChKLyIRVxgJ4tr-NNHO2ug70p4r-vl4QUuHCwPdL7zdOMHyHPES4QGna5G22-QIqU0QZBPyCLcmMtuYaHZAFAm1pxys_Ik5y3AKCFgsfkjDKUWgq9IMvP3m3sGPJQdTFVdmV3U7j1VfJDXPk-jOsqdtW08VVr3eRTsH3V9Xbt-96mKv8Ik9s8JY8622f_7Piek5v3V9-WH-vrLx8-Ld9d105onGrhOoXMSc0k6xonS2VdY6VjQtByBG9bob0ToDllXEghtGIMuPVCupaxc_L24Lvbt4NfOT9OyfZml8Jg008TbTB_K2PYmHW8Naz4K8qLwZujQYrf9z5PZgjZzauMPu6zQQUMFDZa_B-lZUSqUWBBX_-DbuM-jeUnflGKKYW6UJcHyqWYc_LdaW4EM2dp5izNfZal4-Wf65743-EVoDoCc-e9nTZcGwqAqiAvDsg2TzGdGF4k4GLWXx30zkZj1ylkc_OVAsrSzUCgZHdK4rX9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1223838819</pqid></control><display><type>article</type><title>Mechanism for adaptive remodeling of the bacterial flagellar switch</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lele, Pushkar P ; Branch, Richard W ; Nathan, Vedhavalli S. J ; Berg, Howard C</creator><creatorcontrib>Lele, Pushkar P ; Branch, Richard W ; Nathan, Vedhavalli S. J ; Berg, Howard C</creatorcontrib><description>The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange depend on the direction of flagellar rotation, not on CheY-P binding per se. Our results are consistent with a model in which the structural differences associated with the direction of rotation modulate the strength of FliM binding. When the motor spins counterclockwise, FliM binding strengthens, the fraction of FliM molecules that exchanges decreases, and the ring content increases. The larger number of CheY-P binding sites enhances the motor’s sensitivity, i.e., the motor adapts. An interesting unresolved question is how additional copies of FliM might be accommodated.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1212327109</identifier><identifier>PMID: 23169659</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Bacterial Proteins - metabolism ; Binding sites ; Biological Sciences ; Bleaching ; Chemotaxis ; Escherichia coli ; Escherichia coli - chemistry ; Escherichia coli - physiology ; Flagella - physiology ; flagellum ; Fluorescence ; Fluorescence Recovery After Photobleaching ; Membrane Proteins - metabolism ; Methyl-Accepting Chemotaxis Proteins ; Microscopy, Fluorescence ; Models, Chemical ; Molecular Motor Proteins - metabolism ; Molecules ; Motors ; Physiological regulation ; Population growth ; Protein Binding ; Renovations ; Rotation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (49), p.20018-20022</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 4, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-5cf813c69363f7c6c69ac7a6c355235554bb59ec50942345655983304ae56cb33</citedby><cites>FETCH-LOGICAL-c591t-5cf813c69363f7c6c69ac7a6c355235554bb59ec50942345655983304ae56cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830458$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830458$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23169659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lele, Pushkar P</creatorcontrib><creatorcontrib>Branch, Richard W</creatorcontrib><creatorcontrib>Nathan, Vedhavalli S. J</creatorcontrib><creatorcontrib>Berg, Howard C</creatorcontrib><title>Mechanism for adaptive remodeling of the bacterial flagellar switch</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange depend on the direction of flagellar rotation, not on CheY-P binding per se. Our results are consistent with a model in which the structural differences associated with the direction of rotation modulate the strength of FliM binding. When the motor spins counterclockwise, FliM binding strengthens, the fraction of FliM molecules that exchanges decreases, and the ring content increases. The larger number of CheY-P binding sites enhances the motor’s sensitivity, i.e., the motor adapts. An interesting unresolved question is how additional copies of FliM might be accommodated.</description><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Bleaching</subject><subject>Chemotaxis</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - physiology</subject><subject>Flagella - physiology</subject><subject>flagellum</subject><subject>Fluorescence</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>Membrane Proteins - metabolism</subject><subject>Methyl-Accepting Chemotaxis Proteins</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Chemical</subject><subject>Molecular Motor Proteins - metabolism</subject><subject>Molecules</subject><subject>Motors</subject><subject>Physiological regulation</subject><subject>Population growth</subject><subject>Protein Binding</subject><subject>Renovations</subject><subject>Rotation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EoqFw5gSsxIXLtjP-WvuChKLyIRVxgJ4tr-NNHO2ug70p4r-vl4QUuHCwPdL7zdOMHyHPES4QGna5G22-QIqU0QZBPyCLcmMtuYaHZAFAm1pxys_Ik5y3AKCFgsfkjDKUWgq9IMvP3m3sGPJQdTFVdmV3U7j1VfJDXPk-jOsqdtW08VVr3eRTsH3V9Xbt-96mKv8Ik9s8JY8622f_7Piek5v3V9-WH-vrLx8-Ld9d105onGrhOoXMSc0k6xonS2VdY6VjQtByBG9bob0ToDllXEghtGIMuPVCupaxc_L24Lvbt4NfOT9OyfZml8Jg008TbTB_K2PYmHW8Naz4K8qLwZujQYrf9z5PZgjZzauMPu6zQQUMFDZa_B-lZUSqUWBBX_-DbuM-jeUnflGKKYW6UJcHyqWYc_LdaW4EM2dp5izNfZal4-Wf65743-EVoDoCc-e9nTZcGwqAqiAvDsg2TzGdGF4k4GLWXx30zkZj1ylkc_OVAsrSzUCgZHdK4rX9</recordid><startdate>20121204</startdate><enddate>20121204</enddate><creator>Lele, Pushkar P</creator><creator>Branch, Richard W</creator><creator>Nathan, Vedhavalli S. J</creator><creator>Berg, Howard C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121204</creationdate><title>Mechanism for adaptive remodeling of the bacterial flagellar switch</title><author>Lele, Pushkar P ; Branch, Richard W ; Nathan, Vedhavalli S. J ; Berg, Howard C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-5cf813c69363f7c6c69ac7a6c355235554bb59ec50942345655983304ae56cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Bleaching</topic><topic>Chemotaxis</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - physiology</topic><topic>Flagella - physiology</topic><topic>flagellum</topic><topic>Fluorescence</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>Membrane Proteins - metabolism</topic><topic>Methyl-Accepting Chemotaxis Proteins</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Chemical</topic><topic>Molecular Motor Proteins - metabolism</topic><topic>Molecules</topic><topic>Motors</topic><topic>Physiological regulation</topic><topic>Population growth</topic><topic>Protein Binding</topic><topic>Renovations</topic><topic>Rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lele, Pushkar P</creatorcontrib><creatorcontrib>Branch, Richard W</creatorcontrib><creatorcontrib>Nathan, Vedhavalli S. J</creatorcontrib><creatorcontrib>Berg, Howard C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lele, Pushkar P</au><au>Branch, Richard W</au><au>Nathan, Vedhavalli S. J</au><au>Berg, Howard C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism for adaptive remodeling of the bacterial flagellar switch</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-12-04</date><risdate>2012</risdate><volume>109</volume><issue>49</issue><spage>20018</spage><epage>20022</epage><pages>20018-20022</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange depend on the direction of flagellar rotation, not on CheY-P binding per se. Our results are consistent with a model in which the structural differences associated with the direction of rotation modulate the strength of FliM binding. When the motor spins counterclockwise, FliM binding strengthens, the fraction of FliM molecules that exchanges decreases, and the ring content increases. The larger number of CheY-P binding sites enhances the motor’s sensitivity, i.e., the motor adapts. An interesting unresolved question is how additional copies of FliM might be accommodated.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23169659</pmid><doi>10.1073/pnas.1212327109</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (49), p.20018-20022
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_41830458
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bacteria
Bacterial Proteins - metabolism
Binding sites
Biological Sciences
Bleaching
Chemotaxis
Escherichia coli
Escherichia coli - chemistry
Escherichia coli - physiology
Flagella - physiology
flagellum
Fluorescence
Fluorescence Recovery After Photobleaching
Membrane Proteins - metabolism
Methyl-Accepting Chemotaxis Proteins
Microscopy, Fluorescence
Models, Chemical
Molecular Motor Proteins - metabolism
Molecules
Motors
Physiological regulation
Population growth
Protein Binding
Renovations
Rotation
title Mechanism for adaptive remodeling of the bacterial flagellar switch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20for%20adaptive%20remodeling%20of%20the%20bacterial%20flagellar%20switch&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lele,%20Pushkar%20P&rft.date=2012-12-04&rft.volume=109&rft.issue=49&rft.spage=20018&rft.epage=20022&rft.pages=20018-20022&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1212327109&rft_dat=%3Cjstor_fao_a%3E41830458%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1223838819&rft_id=info:pmid/23169659&rft_jstor_id=41830458&rfr_iscdi=true