Mechanism for adaptive remodeling of the bacterial flagellar switch
The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-12, Vol.109 (49), p.20018-20022 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20022 |
---|---|
container_issue | 49 |
container_start_page | 20018 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Lele, Pushkar P Branch, Richard W Nathan, Vedhavalli S. J Berg, Howard C |
description | The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange depend on the direction of flagellar rotation, not on CheY-P binding per se. Our results are consistent with a model in which the structural differences associated with the direction of rotation modulate the strength of FliM binding. When the motor spins counterclockwise, FliM binding strengthens, the fraction of FliM molecules that exchanges decreases, and the ring content increases. The larger number of CheY-P binding sites enhances the motor’s sensitivity, i.e., the motor adapts. An interesting unresolved question is how additional copies of FliM might be accommodated. |
doi_str_mv | 10.1073/pnas.1212327109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_jstor_primary_41830458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830458</jstor_id><sourcerecordid>41830458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-5cf813c69363f7c6c69ac7a6c355235554bb59ec50942345655983304ae56cb33</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EoqFw5gSsxIXLtjP-WvuChKLyIRVxgJ4tr-NNHO2ug70p4r-vl4QUuHCwPdL7zdOMHyHPES4QGna5G22-QIqU0QZBPyCLcmMtuYaHZAFAm1pxys_Ik5y3AKCFgsfkjDKUWgq9IMvP3m3sGPJQdTFVdmV3U7j1VfJDXPk-jOsqdtW08VVr3eRTsH3V9Xbt-96mKv8Ik9s8JY8622f_7Piek5v3V9-WH-vrLx8-Ld9d105onGrhOoXMSc0k6xonS2VdY6VjQtByBG9bob0ToDllXEghtGIMuPVCupaxc_L24Lvbt4NfOT9OyfZml8Jg008TbTB_K2PYmHW8Naz4K8qLwZujQYrf9z5PZgjZzauMPu6zQQUMFDZa_B-lZUSqUWBBX_-DbuM-jeUnflGKKYW6UJcHyqWYc_LdaW4EM2dp5izNfZal4-Wf65743-EVoDoCc-e9nTZcGwqAqiAvDsg2TzGdGF4k4GLWXx30zkZj1ylkc_OVAsrSzUCgZHdK4rX9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1223838819</pqid></control><display><type>article</type><title>Mechanism for adaptive remodeling of the bacterial flagellar switch</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lele, Pushkar P ; Branch, Richard W ; Nathan, Vedhavalli S. J ; Berg, Howard C</creator><creatorcontrib>Lele, Pushkar P ; Branch, Richard W ; Nathan, Vedhavalli S. J ; Berg, Howard C</creatorcontrib><description>The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange depend on the direction of flagellar rotation, not on CheY-P binding per se. Our results are consistent with a model in which the structural differences associated with the direction of rotation modulate the strength of FliM binding. When the motor spins counterclockwise, FliM binding strengthens, the fraction of FliM molecules that exchanges decreases, and the ring content increases. The larger number of CheY-P binding sites enhances the motor’s sensitivity, i.e., the motor adapts. An interesting unresolved question is how additional copies of FliM might be accommodated.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1212327109</identifier><identifier>PMID: 23169659</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Bacterial Proteins - metabolism ; Binding sites ; Biological Sciences ; Bleaching ; Chemotaxis ; Escherichia coli ; Escherichia coli - chemistry ; Escherichia coli - physiology ; Flagella - physiology ; flagellum ; Fluorescence ; Fluorescence Recovery After Photobleaching ; Membrane Proteins - metabolism ; Methyl-Accepting Chemotaxis Proteins ; Microscopy, Fluorescence ; Models, Chemical ; Molecular Motor Proteins - metabolism ; Molecules ; Motors ; Physiological regulation ; Population growth ; Protein Binding ; Renovations ; Rotation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (49), p.20018-20022</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 4, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-5cf813c69363f7c6c69ac7a6c355235554bb59ec50942345655983304ae56cb33</citedby><cites>FETCH-LOGICAL-c591t-5cf813c69363f7c6c69ac7a6c355235554bb59ec50942345655983304ae56cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830458$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830458$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23169659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lele, Pushkar P</creatorcontrib><creatorcontrib>Branch, Richard W</creatorcontrib><creatorcontrib>Nathan, Vedhavalli S. J</creatorcontrib><creatorcontrib>Berg, Howard C</creatorcontrib><title>Mechanism for adaptive remodeling of the bacterial flagellar switch</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange depend on the direction of flagellar rotation, not on CheY-P binding per se. Our results are consistent with a model in which the structural differences associated with the direction of rotation modulate the strength of FliM binding. When the motor spins counterclockwise, FliM binding strengthens, the fraction of FliM molecules that exchanges decreases, and the ring content increases. The larger number of CheY-P binding sites enhances the motor’s sensitivity, i.e., the motor adapts. An interesting unresolved question is how additional copies of FliM might be accommodated.</description><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Bleaching</subject><subject>Chemotaxis</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - physiology</subject><subject>Flagella - physiology</subject><subject>flagellum</subject><subject>Fluorescence</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>Membrane Proteins - metabolism</subject><subject>Methyl-Accepting Chemotaxis Proteins</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Chemical</subject><subject>Molecular Motor Proteins - metabolism</subject><subject>Molecules</subject><subject>Motors</subject><subject>Physiological regulation</subject><subject>Population growth</subject><subject>Protein Binding</subject><subject>Renovations</subject><subject>Rotation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EoqFw5gSsxIXLtjP-WvuChKLyIRVxgJ4tr-NNHO2ug70p4r-vl4QUuHCwPdL7zdOMHyHPES4QGna5G22-QIqU0QZBPyCLcmMtuYaHZAFAm1pxys_Ik5y3AKCFgsfkjDKUWgq9IMvP3m3sGPJQdTFVdmV3U7j1VfJDXPk-jOsqdtW08VVr3eRTsH3V9Xbt-96mKv8Ik9s8JY8622f_7Piek5v3V9-WH-vrLx8-Ld9d105onGrhOoXMSc0k6xonS2VdY6VjQtByBG9bob0ToDllXEghtGIMuPVCupaxc_L24Lvbt4NfOT9OyfZml8Jg008TbTB_K2PYmHW8Naz4K8qLwZujQYrf9z5PZgjZzauMPu6zQQUMFDZa_B-lZUSqUWBBX_-DbuM-jeUnflGKKYW6UJcHyqWYc_LdaW4EM2dp5izNfZal4-Wf65743-EVoDoCc-e9nTZcGwqAqiAvDsg2TzGdGF4k4GLWXx30zkZj1ylkc_OVAsrSzUCgZHdK4rX9</recordid><startdate>20121204</startdate><enddate>20121204</enddate><creator>Lele, Pushkar P</creator><creator>Branch, Richard W</creator><creator>Nathan, Vedhavalli S. J</creator><creator>Berg, Howard C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121204</creationdate><title>Mechanism for adaptive remodeling of the bacterial flagellar switch</title><author>Lele, Pushkar P ; Branch, Richard W ; Nathan, Vedhavalli S. J ; Berg, Howard C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-5cf813c69363f7c6c69ac7a6c355235554bb59ec50942345655983304ae56cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Bleaching</topic><topic>Chemotaxis</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - physiology</topic><topic>Flagella - physiology</topic><topic>flagellum</topic><topic>Fluorescence</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>Membrane Proteins - metabolism</topic><topic>Methyl-Accepting Chemotaxis Proteins</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Chemical</topic><topic>Molecular Motor Proteins - metabolism</topic><topic>Molecules</topic><topic>Motors</topic><topic>Physiological regulation</topic><topic>Population growth</topic><topic>Protein Binding</topic><topic>Renovations</topic><topic>Rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lele, Pushkar P</creatorcontrib><creatorcontrib>Branch, Richard W</creatorcontrib><creatorcontrib>Nathan, Vedhavalli S. J</creatorcontrib><creatorcontrib>Berg, Howard C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lele, Pushkar P</au><au>Branch, Richard W</au><au>Nathan, Vedhavalli S. J</au><au>Berg, Howard C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism for adaptive remodeling of the bacterial flagellar switch</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-12-04</date><risdate>2012</risdate><volume>109</volume><issue>49</issue><spage>20018</spage><epage>20022</epage><pages>20018-20022</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange depend on the direction of flagellar rotation, not on CheY-P binding per se. Our results are consistent with a model in which the structural differences associated with the direction of rotation modulate the strength of FliM binding. When the motor spins counterclockwise, FliM binding strengthens, the fraction of FliM molecules that exchanges decreases, and the ring content increases. The larger number of CheY-P binding sites enhances the motor’s sensitivity, i.e., the motor adapts. An interesting unresolved question is how additional copies of FliM might be accommodated.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23169659</pmid><doi>10.1073/pnas.1212327109</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (49), p.20018-20022 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_41830458 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacteria Bacterial Proteins - metabolism Binding sites Biological Sciences Bleaching Chemotaxis Escherichia coli Escherichia coli - chemistry Escherichia coli - physiology Flagella - physiology flagellum Fluorescence Fluorescence Recovery After Photobleaching Membrane Proteins - metabolism Methyl-Accepting Chemotaxis Proteins Microscopy, Fluorescence Models, Chemical Molecular Motor Proteins - metabolism Molecules Motors Physiological regulation Population growth Protein Binding Renovations Rotation |
title | Mechanism for adaptive remodeling of the bacterial flagellar switch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20for%20adaptive%20remodeling%20of%20the%20bacterial%20flagellar%20switch&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lele,%20Pushkar%20P&rft.date=2012-12-04&rft.volume=109&rft.issue=49&rft.spage=20018&rft.epage=20022&rft.pages=20018-20022&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1212327109&rft_dat=%3Cjstor_fao_a%3E41830458%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1223838819&rft_id=info:pmid/23169659&rft_jstor_id=41830458&rfr_iscdi=true |