NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions
Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown....
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (46), p.18779-18784 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18784 |
---|---|
container_issue | 46 |
container_start_page | 18779 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Aachmann, Finn L Sørlie, Morten Skjåk-Bræk, Gudmund Eijsink, Vincent G. H Vaaje-Kolstad, Gustav |
description | Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu ²⁺ (K d = 55 nM; from isothermal titration calorimetry) and higher preference for Cu ¹⁺ (K d ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu ²⁺ of 275 mV using a thermodynamic cycle). Strong binding of Cu ¹⁺ was also reflected in a reduction in the p K ₐ values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a ²H/ ¹H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates. |
doi_str_mv | 10.1073/pnas.1208822109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_41830102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830102</jstor_id><sourcerecordid>41830102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-6dbaf12aa1c6ce11fe26c94bac2ecffd648bd1a385644f4657d2a302680b6dff3</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7jh69qQGvHjY2a18TLr7IsjiF6wK6p5DOp30ZOhJ2iS9OP_An22aGWdVAimoeuqtKl6EnhK4IFCxy9GrdEEo1DWlBJp7aFF-shK8gftoAUCrVc0pP0OPUtoCQLOu4SE6o4wQSgRfoF-fP33FKcdJ5ykaHCxWeNhnp_EYhn1SWm9UdJ3Bu-BD-LnvTZlo8BjDbckm7Hxy_SaXmAPWYRxNxK3znfP9-Uxl4zzu9l7tnE7nWPkOp6ktA1U2c5OJSmcXfHqMHlg1JPPkGJfo5t3b71cfVtdf3n-8enO90ryheSW6VllClSJaaEOINVTohrdKU6Ot7QSv244oVq8F55aLddVRxYCKGlrRWcuW6PVBd5zanem08WWXQY7R7VTcy6Cc_Lfi3Ub24VayNTAKrAi8OgrE8GMyKcudS9oMg_ImTEkSUpFaAOO0oC__Q7dhir6cV6j1bIAo4BJdHigdQ0rR2NMyBOTsspxdlncul47nf99w4v_YWgB8BObOO7lGciFJXVWzxrMDsk05xBPDSc2AwLz7i0PdqiBVH12SN98oEAFAGJTHfgOijMUH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1152164660</pqid></control><display><type>article</type><title>NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Aachmann, Finn L ; Sørlie, Morten ; Skjåk-Bræk, Gudmund ; Eijsink, Vincent G. H ; Vaaje-Kolstad, Gustav</creator><creatorcontrib>Aachmann, Finn L ; Sørlie, Morten ; Skjåk-Bræk, Gudmund ; Eijsink, Vincent G. H ; Vaaje-Kolstad, Gustav</creatorcontrib><description>Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu ²⁺ (K d = 55 nM; from isothermal titration calorimetry) and higher preference for Cu ¹⁺ (K d ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu ²⁺ of 275 mV using a thermodynamic cycle). Strong binding of Cu ¹⁺ was also reflected in a reduction in the p K ₐ values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a ²H/ ¹H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1208822109</identifier><identifier>PMID: 23112164</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding sites ; Biological Sciences ; biorefining ; calorimetry ; carbohydrate binding ; Carbohydrates ; catalytic activity ; Chitin ; Copper ; Copper - chemistry ; Copper - metabolism ; Crystal structure ; Crystals ; cyanides ; Electron transfer ; Enzymes ; glycosides ; histidine ; Metal ions ; Metalloproteins - chemistry ; Metalloproteins - metabolism ; Mixed Function Oxygenases - chemistry ; Mixed Function Oxygenases - metabolism ; NMR ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; Nuclear Magnetic Resonance, Biomolecular ; Oxygen ; Polysaccharides ; Protein Structure, Tertiary ; Proteins ; redox potential ; Serratia marcescens - enzymology ; Structure-Activity Relationship ; Substrates ; thermodynamics ; Titration</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (46), p.18779-18784</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 13, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-6dbaf12aa1c6ce11fe26c94bac2ecffd648bd1a385644f4657d2a302680b6dff3</citedby><cites>FETCH-LOGICAL-c492t-6dbaf12aa1c6ce11fe26c94bac2ecffd648bd1a385644f4657d2a302680b6dff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/46.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830102$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830102$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23112164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aachmann, Finn L</creatorcontrib><creatorcontrib>Sørlie, Morten</creatorcontrib><creatorcontrib>Skjåk-Bræk, Gudmund</creatorcontrib><creatorcontrib>Eijsink, Vincent G. H</creatorcontrib><creatorcontrib>Vaaje-Kolstad, Gustav</creatorcontrib><title>NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu ²⁺ (K d = 55 nM; from isothermal titration calorimetry) and higher preference for Cu ¹⁺ (K d ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu ²⁺ of 275 mV using a thermodynamic cycle). Strong binding of Cu ¹⁺ was also reflected in a reduction in the p K ₐ values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a ²H/ ¹H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>biorefining</subject><subject>calorimetry</subject><subject>carbohydrate binding</subject><subject>Carbohydrates</subject><subject>catalytic activity</subject><subject>Chitin</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Copper - metabolism</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>cyanides</subject><subject>Electron transfer</subject><subject>Enzymes</subject><subject>glycosides</subject><subject>histidine</subject><subject>Metal ions</subject><subject>Metalloproteins - chemistry</subject><subject>Metalloproteins - metabolism</subject><subject>Mixed Function Oxygenases - chemistry</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Oxygen</subject><subject>Polysaccharides</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>redox potential</subject><subject>Serratia marcescens - enzymology</subject><subject>Structure-Activity Relationship</subject><subject>Substrates</subject><subject>thermodynamics</subject><subject>Titration</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU2LFDEQhoMo7jh69qQGvHjY2a18TLr7IsjiF6wK6p5DOp30ZOhJ2iS9OP_An22aGWdVAimoeuqtKl6EnhK4IFCxy9GrdEEo1DWlBJp7aFF-shK8gftoAUCrVc0pP0OPUtoCQLOu4SE6o4wQSgRfoF-fP33FKcdJ5ykaHCxWeNhnp_EYhn1SWm9UdJ3Bu-BD-LnvTZlo8BjDbckm7Hxy_SaXmAPWYRxNxK3znfP9-Uxl4zzu9l7tnE7nWPkOp6ktA1U2c5OJSmcXfHqMHlg1JPPkGJfo5t3b71cfVtdf3n-8enO90ryheSW6VllClSJaaEOINVTohrdKU6Ot7QSv244oVq8F55aLddVRxYCKGlrRWcuW6PVBd5zanem08WWXQY7R7VTcy6Cc_Lfi3Ub24VayNTAKrAi8OgrE8GMyKcudS9oMg_ImTEkSUpFaAOO0oC__Q7dhir6cV6j1bIAo4BJdHigdQ0rR2NMyBOTsspxdlncul47nf99w4v_YWgB8BObOO7lGciFJXVWzxrMDsk05xBPDSc2AwLz7i0PdqiBVH12SN98oEAFAGJTHfgOijMUH</recordid><startdate>20121113</startdate><enddate>20121113</enddate><creator>Aachmann, Finn L</creator><creator>Sørlie, Morten</creator><creator>Skjåk-Bræk, Gudmund</creator><creator>Eijsink, Vincent G. H</creator><creator>Vaaje-Kolstad, Gustav</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121113</creationdate><title>NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions</title><author>Aachmann, Finn L ; Sørlie, Morten ; Skjåk-Bræk, Gudmund ; Eijsink, Vincent G. H ; Vaaje-Kolstad, Gustav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-6dbaf12aa1c6ce11fe26c94bac2ecffd648bd1a385644f4657d2a302680b6dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>biorefining</topic><topic>calorimetry</topic><topic>carbohydrate binding</topic><topic>Carbohydrates</topic><topic>catalytic activity</topic><topic>Chitin</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Copper - metabolism</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>cyanides</topic><topic>Electron transfer</topic><topic>Enzymes</topic><topic>glycosides</topic><topic>histidine</topic><topic>Metal ions</topic><topic>Metalloproteins - chemistry</topic><topic>Metalloproteins - metabolism</topic><topic>Mixed Function Oxygenases - chemistry</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Oxygen</topic><topic>Polysaccharides</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>redox potential</topic><topic>Serratia marcescens - enzymology</topic><topic>Structure-Activity Relationship</topic><topic>Substrates</topic><topic>thermodynamics</topic><topic>Titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aachmann, Finn L</creatorcontrib><creatorcontrib>Sørlie, Morten</creatorcontrib><creatorcontrib>Skjåk-Bræk, Gudmund</creatorcontrib><creatorcontrib>Eijsink, Vincent G. H</creatorcontrib><creatorcontrib>Vaaje-Kolstad, Gustav</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aachmann, Finn L</au><au>Sørlie, Morten</au><au>Skjåk-Bræk, Gudmund</au><au>Eijsink, Vincent G. H</au><au>Vaaje-Kolstad, Gustav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-13</date><risdate>2012</risdate><volume>109</volume><issue>46</issue><spage>18779</spage><epage>18784</epage><pages>18779-18784</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu ²⁺ (K d = 55 nM; from isothermal titration calorimetry) and higher preference for Cu ¹⁺ (K d ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu ²⁺ of 275 mV using a thermodynamic cycle). Strong binding of Cu ¹⁺ was also reflected in a reduction in the p K ₐ values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a ²H/ ¹H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23112164</pmid><doi>10.1073/pnas.1208822109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (46), p.18779-18784 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_41830102 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacterial Proteins - chemistry Bacterial Proteins - metabolism Binding sites Biological Sciences biorefining calorimetry carbohydrate binding Carbohydrates catalytic activity Chitin Copper Copper - chemistry Copper - metabolism Crystal structure Crystals cyanides Electron transfer Enzymes glycosides histidine Metal ions Metalloproteins - chemistry Metalloproteins - metabolism Mixed Function Oxygenases - chemistry Mixed Function Oxygenases - metabolism NMR Nuclear magnetic resonance nuclear magnetic resonance spectroscopy Nuclear Magnetic Resonance, Biomolecular Oxygen Polysaccharides Protein Structure, Tertiary Proteins redox potential Serratia marcescens - enzymology Structure-Activity Relationship Substrates thermodynamics Titration |
title | NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMR%20structure%20of%20a%20lytic%20polysaccharide%20monooxygenase%20provides%20insight%20into%20copper%20binding,%20protein%20dynamics,%20and%20substrate%20interactions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Aachmann,%20Finn%20L&rft.date=2012-11-13&rft.volume=109&rft.issue=46&rft.spage=18779&rft.epage=18784&rft.pages=18779-18784&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1208822109&rft_dat=%3Cjstor_proqu%3E41830102%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1152164660&rft_id=info:pmid/23112164&rft_jstor_id=41830102&rfr_iscdi=true |