Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing

Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of tRNA precursors. Typically these enzymes are ribonucleoproteins with a conserved RNA component responsible for catalysis. However, protein-only RNase P (PRORP) enzymes process precursor tRNAs in human mitochondria and in all tRN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-10, Vol.109 (40), p.16149-16154
Hauptverfasser: Howard, Michael J., Lim, Wan Hsin, Fierke, Carol A., Koutmos, Markos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16154
container_issue 40
container_start_page 16149
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Howard, Michael J.
Lim, Wan Hsin
Fierke, Carol A.
Koutmos, Markos
description Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of tRNA precursors. Typically these enzymes are ribonucleoproteins with a conserved RNA component responsible for catalysis. However, protein-only RNase P (PRORP) enzymes process precursor tRNAs in human mitochondria and in all tRNA-using compartments of Arabidopsis thaliana. PRORP enzymes are nuclear encoded and conserved among many eukaryotes, having evolved recently as yeast mitochondrial genomes encode an RNase P RNA. Here we report the crystal structure of PRORP1 from A. thaliana at 1.75 Å resolution, revealing a prototypical metallonuclease domain tethered to a pentatricopeptide repeat (PPR) domain by a structural zinc-binding domain. The metallonuclease domain is a unique high-resolution structure of a Nedd4-BP1, YacP Nucleases (NYN) domain that is a member of the PIN domain-like fold superfamily, including the FLAP nuclease family. The structural similarity between PRORP1 and the FLAP nuclease family suggests that they evolved from a common ancestor. Biochemical data reveal that conserved aspartate residues in PRORP1 are important for catalytic activity and metal binding and that the PPR domain also enhances activity, likely through an interaction with pre-tRNA. These results provide a foundation for understanding tRNA maturation in organelles. Furthermore, these studies allow for a molecular-level comparison of the catalytic strategies used by the only known naturally evolved protein and RNA-based catalysts that perform the same biological function, pre-tRNA maturation, thereby providing insight into the differences between the prebiotic RNA world and the present protein-dominated world.
doi_str_mv 10.1073/pnas.1209062109
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_41763217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41763217</jstor_id><sourcerecordid>41763217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-55db6947d68fb57150267a419e07c2be62f2473444f674ab84159e6f4409db543</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EomXhzAnkG1zSjp2JHV-QqoovqXwIwdlyHGfXVTZebGelnvnjONplCycunoOf99GMXkKeM7hgIOvL3WTSBeOgQHAG6gE5Ly-rBCp4SM4BuKxa5HhGnqR0CwCqaeExOeNcKYYCz8mvTz4HuwlTH70ZafRdmGY7OpMc_UpTjrPNc3R0F8Pe9y5RPyW_3uQyc6B546jbh3HOPkw0DNSabMa77O0SNdmtfYkMIZa8s3NMIVb52-cr2rxajNal5Kf1U_JoMGNyz45zRX68e_v9-kN18-X9x-urm8qirHPVNH0nFMpetEPXSNYAF9IgUw6k5Z0TfOAFRMRBSDRdi6xRTgyIoPquwXpF3hy8u7nbut66qew46l30WxPvdDBe__sz-Y1eh72uUaqmqFfk9VEQw8_Zpay3Plk3jmZyYU6atVAzbDjW_0eh5QitYlDQywNqY0gpuuG0EQO9tKyXlvV9yyXx8u9DTvyfWgtAj8CSvNcpjUUpGC6OFwfkNuUQTwwyKWrOZP0bAAK6BA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082408910</pqid></control><display><type>article</type><title>Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing</title><source>Jstor Complete Legacy</source><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Howard, Michael J. ; Lim, Wan Hsin ; Fierke, Carol A. ; Koutmos, Markos</creator><creatorcontrib>Howard, Michael J. ; Lim, Wan Hsin ; Fierke, Carol A. ; Koutmos, Markos</creatorcontrib><description>Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of tRNA precursors. Typically these enzymes are ribonucleoproteins with a conserved RNA component responsible for catalysis. However, protein-only RNase P (PRORP) enzymes process precursor tRNAs in human mitochondria and in all tRNA-using compartments of Arabidopsis thaliana. PRORP enzymes are nuclear encoded and conserved among many eukaryotes, having evolved recently as yeast mitochondrial genomes encode an RNase P RNA. Here we report the crystal structure of PRORP1 from A. thaliana at 1.75 Å resolution, revealing a prototypical metallonuclease domain tethered to a pentatricopeptide repeat (PPR) domain by a structural zinc-binding domain. The metallonuclease domain is a unique high-resolution structure of a Nedd4-BP1, YacP Nucleases (NYN) domain that is a member of the PIN domain-like fold superfamily, including the FLAP nuclease family. The structural similarity between PRORP1 and the FLAP nuclease family suggests that they evolved from a common ancestor. Biochemical data reveal that conserved aspartate residues in PRORP1 are important for catalytic activity and metal binding and that the PPR domain also enhances activity, likely through an interaction with pre-tRNA. These results provide a foundation for understanding tRNA maturation in organelles. Furthermore, these studies allow for a molecular-level comparison of the catalytic strategies used by the only known naturally evolved protein and RNA-based catalysts that perform the same biological function, pre-tRNA maturation, thereby providing insight into the differences between the prebiotic RNA world and the present protein-dominated world.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1209062109</identifier><identifier>PMID: 22991464</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Arabidopsis - enzymology ; Arabidopsis thaliana ; aspartic acid ; Biochemistry ; Biological Sciences ; Catalysis ; catalysts ; catalytic activity ; crystal structure ; Crystallography, X-Ray ; Enzymes ; eukaryotic cells ; evolution ; Evolution, Molecular ; Humans ; Metal ions ; Mitochondria ; Mitochondria - enzymology ; Mitochondria - physiology ; mitochondrial genome ; Models, Molecular ; prebiotics ; Protein Structure, Tertiary ; Proteins ; Ribonuclease P - chemistry ; Ribonuclease P - metabolism ; ribonucleases ; ribonucleoproteins ; RNA ; RNA Precursors - metabolism ; RNA Processing, Post-Transcriptional - physiology ; Transfer RNA ; yeasts ; Zinc</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (40), p.16149-16154</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-55db6947d68fb57150267a419e07c2be62f2473444f674ab84159e6f4409db543</citedby><cites>FETCH-LOGICAL-c473t-55db6947d68fb57150267a419e07c2be62f2473444f674ab84159e6f4409db543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41763217$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41763217$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22991464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Howard, Michael J.</creatorcontrib><creatorcontrib>Lim, Wan Hsin</creatorcontrib><creatorcontrib>Fierke, Carol A.</creatorcontrib><creatorcontrib>Koutmos, Markos</creatorcontrib><title>Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of tRNA precursors. Typically these enzymes are ribonucleoproteins with a conserved RNA component responsible for catalysis. However, protein-only RNase P (PRORP) enzymes process precursor tRNAs in human mitochondria and in all tRNA-using compartments of Arabidopsis thaliana. PRORP enzymes are nuclear encoded and conserved among many eukaryotes, having evolved recently as yeast mitochondrial genomes encode an RNase P RNA. Here we report the crystal structure of PRORP1 from A. thaliana at 1.75 Å resolution, revealing a prototypical metallonuclease domain tethered to a pentatricopeptide repeat (PPR) domain by a structural zinc-binding domain. The metallonuclease domain is a unique high-resolution structure of a Nedd4-BP1, YacP Nucleases (NYN) domain that is a member of the PIN domain-like fold superfamily, including the FLAP nuclease family. The structural similarity between PRORP1 and the FLAP nuclease family suggests that they evolved from a common ancestor. Biochemical data reveal that conserved aspartate residues in PRORP1 are important for catalytic activity and metal binding and that the PPR domain also enhances activity, likely through an interaction with pre-tRNA. These results provide a foundation for understanding tRNA maturation in organelles. Furthermore, these studies allow for a molecular-level comparison of the catalytic strategies used by the only known naturally evolved protein and RNA-based catalysts that perform the same biological function, pre-tRNA maturation, thereby providing insight into the differences between the prebiotic RNA world and the present protein-dominated world.</description><subject>Active sites</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis thaliana</subject><subject>aspartic acid</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>eukaryotic cells</subject><subject>evolution</subject><subject>Evolution, Molecular</subject><subject>Humans</subject><subject>Metal ions</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - physiology</subject><subject>mitochondrial genome</subject><subject>Models, Molecular</subject><subject>prebiotics</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Ribonuclease P - chemistry</subject><subject>Ribonuclease P - metabolism</subject><subject>ribonucleases</subject><subject>ribonucleoproteins</subject><subject>RNA</subject><subject>RNA Precursors - metabolism</subject><subject>RNA Processing, Post-Transcriptional - physiology</subject><subject>Transfer RNA</subject><subject>yeasts</subject><subject>Zinc</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EomXhzAnkG1zSjp2JHV-QqoovqXwIwdlyHGfXVTZebGelnvnjONplCycunoOf99GMXkKeM7hgIOvL3WTSBeOgQHAG6gE5Ly-rBCp4SM4BuKxa5HhGnqR0CwCqaeExOeNcKYYCz8mvTz4HuwlTH70ZafRdmGY7OpMc_UpTjrPNc3R0F8Pe9y5RPyW_3uQyc6B546jbh3HOPkw0DNSabMa77O0SNdmtfYkMIZa8s3NMIVb52-cr2rxajNal5Kf1U_JoMGNyz45zRX68e_v9-kN18-X9x-urm8qirHPVNH0nFMpetEPXSNYAF9IgUw6k5Z0TfOAFRMRBSDRdi6xRTgyIoPquwXpF3hy8u7nbut66qew46l30WxPvdDBe__sz-Y1eh72uUaqmqFfk9VEQw8_Zpay3Plk3jmZyYU6atVAzbDjW_0eh5QitYlDQywNqY0gpuuG0EQO9tKyXlvV9yyXx8u9DTvyfWgtAj8CSvNcpjUUpGC6OFwfkNuUQTwwyKWrOZP0bAAK6BA</recordid><startdate>20121002</startdate><enddate>20121002</enddate><creator>Howard, Michael J.</creator><creator>Lim, Wan Hsin</creator><creator>Fierke, Carol A.</creator><creator>Koutmos, Markos</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121002</creationdate><title>Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing</title><author>Howard, Michael J. ; Lim, Wan Hsin ; Fierke, Carol A. ; Koutmos, Markos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-55db6947d68fb57150267a419e07c2be62f2473444f674ab84159e6f4409db543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active sites</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis thaliana</topic><topic>aspartic acid</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>eukaryotic cells</topic><topic>evolution</topic><topic>Evolution, Molecular</topic><topic>Humans</topic><topic>Metal ions</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - physiology</topic><topic>mitochondrial genome</topic><topic>Models, Molecular</topic><topic>prebiotics</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Ribonuclease P - chemistry</topic><topic>Ribonuclease P - metabolism</topic><topic>ribonucleases</topic><topic>ribonucleoproteins</topic><topic>RNA</topic><topic>RNA Precursors - metabolism</topic><topic>RNA Processing, Post-Transcriptional - physiology</topic><topic>Transfer RNA</topic><topic>yeasts</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, Michael J.</creatorcontrib><creatorcontrib>Lim, Wan Hsin</creatorcontrib><creatorcontrib>Fierke, Carol A.</creatorcontrib><creatorcontrib>Koutmos, Markos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, Michael J.</au><au>Lim, Wan Hsin</au><au>Fierke, Carol A.</au><au>Koutmos, Markos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-10-02</date><risdate>2012</risdate><volume>109</volume><issue>40</issue><spage>16149</spage><epage>16154</epage><pages>16149-16154</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of tRNA precursors. Typically these enzymes are ribonucleoproteins with a conserved RNA component responsible for catalysis. However, protein-only RNase P (PRORP) enzymes process precursor tRNAs in human mitochondria and in all tRNA-using compartments of Arabidopsis thaliana. PRORP enzymes are nuclear encoded and conserved among many eukaryotes, having evolved recently as yeast mitochondrial genomes encode an RNase P RNA. Here we report the crystal structure of PRORP1 from A. thaliana at 1.75 Å resolution, revealing a prototypical metallonuclease domain tethered to a pentatricopeptide repeat (PPR) domain by a structural zinc-binding domain. The metallonuclease domain is a unique high-resolution structure of a Nedd4-BP1, YacP Nucleases (NYN) domain that is a member of the PIN domain-like fold superfamily, including the FLAP nuclease family. The structural similarity between PRORP1 and the FLAP nuclease family suggests that they evolved from a common ancestor. Biochemical data reveal that conserved aspartate residues in PRORP1 are important for catalytic activity and metal binding and that the PPR domain also enhances activity, likely through an interaction with pre-tRNA. These results provide a foundation for understanding tRNA maturation in organelles. Furthermore, these studies allow for a molecular-level comparison of the catalytic strategies used by the only known naturally evolved protein and RNA-based catalysts that perform the same biological function, pre-tRNA maturation, thereby providing insight into the differences between the prebiotic RNA world and the present protein-dominated world.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22991464</pmid><doi>10.1073/pnas.1209062109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (40), p.16149-16154
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_41763217
source Jstor Complete Legacy; Open Access: PubMed Central; MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Active sites
Arabidopsis - enzymology
Arabidopsis thaliana
aspartic acid
Biochemistry
Biological Sciences
Catalysis
catalysts
catalytic activity
crystal structure
Crystallography, X-Ray
Enzymes
eukaryotic cells
evolution
Evolution, Molecular
Humans
Metal ions
Mitochondria
Mitochondria - enzymology
Mitochondria - physiology
mitochondrial genome
Models, Molecular
prebiotics
Protein Structure, Tertiary
Proteins
Ribonuclease P - chemistry
Ribonuclease P - metabolism
ribonucleases
ribonucleoproteins
RNA
RNA Precursors - metabolism
RNA Processing, Post-Transcriptional - physiology
Transfer RNA
yeasts
Zinc
title Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20ribonuclease%20P%20structure%20provides%20insight%20into%20the%20evolution%20of%20catalytic%20strategies%20for%20precursor-tRNA%205'%20processing&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Howard,%20Michael%20J.&rft.date=2012-10-02&rft.volume=109&rft.issue=40&rft.spage=16149&rft.epage=16154&rft.pages=16149-16154&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1209062109&rft_dat=%3Cjstor_pubme%3E41763217%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082408910&rft_id=info:pmid/22991464&rft_jstor_id=41763217&rfr_iscdi=true