Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing
Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of tRNA precursors. Typically these enzymes are ribonucleoproteins with a conserved RNA component responsible for catalysis. However, protein-only RNase P (PRORP) enzymes process precursor tRNAs in human mitochondria and in all tRN...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-10, Vol.109 (40), p.16149-16154 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16154 |
---|---|
container_issue | 40 |
container_start_page | 16149 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Howard, Michael J. Lim, Wan Hsin Fierke, Carol A. Koutmos, Markos |
description | Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of tRNA precursors. Typically these enzymes are ribonucleoproteins with a conserved RNA component responsible for catalysis. However, protein-only RNase P (PRORP) enzymes process precursor tRNAs in human mitochondria and in all tRNA-using compartments of Arabidopsis thaliana. PRORP enzymes are nuclear encoded and conserved among many eukaryotes, having evolved recently as yeast mitochondrial genomes encode an RNase P RNA. Here we report the crystal structure of PRORP1 from A. thaliana at 1.75 Å resolution, revealing a prototypical metallonuclease domain tethered to a pentatricopeptide repeat (PPR) domain by a structural zinc-binding domain. The metallonuclease domain is a unique high-resolution structure of a Nedd4-BP1, YacP Nucleases (NYN) domain that is a member of the PIN domain-like fold superfamily, including the FLAP nuclease family. The structural similarity between PRORP1 and the FLAP nuclease family suggests that they evolved from a common ancestor. Biochemical data reveal that conserved aspartate residues in PRORP1 are important for catalytic activity and metal binding and that the PPR domain also enhances activity, likely through an interaction with pre-tRNA. These results provide a foundation for understanding tRNA maturation in organelles. Furthermore, these studies allow for a molecular-level comparison of the catalytic strategies used by the only known naturally evolved protein and RNA-based catalysts that perform the same biological function, pre-tRNA maturation, thereby providing insight into the differences between the prebiotic RNA world and the present protein-dominated world. |
doi_str_mv | 10.1073/pnas.1209062109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_41763217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41763217</jstor_id><sourcerecordid>41763217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-55db6947d68fb57150267a419e07c2be62f2473444f674ab84159e6f4409db543</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EomXhzAnkG1zSjp2JHV-QqoovqXwIwdlyHGfXVTZebGelnvnjONplCycunoOf99GMXkKeM7hgIOvL3WTSBeOgQHAG6gE5Ly-rBCp4SM4BuKxa5HhGnqR0CwCqaeExOeNcKYYCz8mvTz4HuwlTH70ZafRdmGY7OpMc_UpTjrPNc3R0F8Pe9y5RPyW_3uQyc6B546jbh3HOPkw0DNSabMa77O0SNdmtfYkMIZa8s3NMIVb52-cr2rxajNal5Kf1U_JoMGNyz45zRX68e_v9-kN18-X9x-urm8qirHPVNH0nFMpetEPXSNYAF9IgUw6k5Z0TfOAFRMRBSDRdi6xRTgyIoPquwXpF3hy8u7nbut66qew46l30WxPvdDBe__sz-Y1eh72uUaqmqFfk9VEQw8_Zpay3Plk3jmZyYU6atVAzbDjW_0eh5QitYlDQywNqY0gpuuG0EQO9tKyXlvV9yyXx8u9DTvyfWgtAj8CSvNcpjUUpGC6OFwfkNuUQTwwyKWrOZP0bAAK6BA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082408910</pqid></control><display><type>article</type><title>Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing</title><source>Jstor Complete Legacy</source><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Howard, Michael J. ; Lim, Wan Hsin ; Fierke, Carol A. ; Koutmos, Markos</creator><creatorcontrib>Howard, Michael J. ; Lim, Wan Hsin ; Fierke, Carol A. ; Koutmos, Markos</creatorcontrib><description>Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of tRNA precursors. Typically these enzymes are ribonucleoproteins with a conserved RNA component responsible for catalysis. However, protein-only RNase P (PRORP) enzymes process precursor tRNAs in human mitochondria and in all tRNA-using compartments of Arabidopsis thaliana. PRORP enzymes are nuclear encoded and conserved among many eukaryotes, having evolved recently as yeast mitochondrial genomes encode an RNase P RNA. Here we report the crystal structure of PRORP1 from A. thaliana at 1.75 Å resolution, revealing a prototypical metallonuclease domain tethered to a pentatricopeptide repeat (PPR) domain by a structural zinc-binding domain. The metallonuclease domain is a unique high-resolution structure of a Nedd4-BP1, YacP Nucleases (NYN) domain that is a member of the PIN domain-like fold superfamily, including the FLAP nuclease family. The structural similarity between PRORP1 and the FLAP nuclease family suggests that they evolved from a common ancestor. Biochemical data reveal that conserved aspartate residues in PRORP1 are important for catalytic activity and metal binding and that the PPR domain also enhances activity, likely through an interaction with pre-tRNA. These results provide a foundation for understanding tRNA maturation in organelles. Furthermore, these studies allow for a molecular-level comparison of the catalytic strategies used by the only known naturally evolved protein and RNA-based catalysts that perform the same biological function, pre-tRNA maturation, thereby providing insight into the differences between the prebiotic RNA world and the present protein-dominated world.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1209062109</identifier><identifier>PMID: 22991464</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Arabidopsis - enzymology ; Arabidopsis thaliana ; aspartic acid ; Biochemistry ; Biological Sciences ; Catalysis ; catalysts ; catalytic activity ; crystal structure ; Crystallography, X-Ray ; Enzymes ; eukaryotic cells ; evolution ; Evolution, Molecular ; Humans ; Metal ions ; Mitochondria ; Mitochondria - enzymology ; Mitochondria - physiology ; mitochondrial genome ; Models, Molecular ; prebiotics ; Protein Structure, Tertiary ; Proteins ; Ribonuclease P - chemistry ; Ribonuclease P - metabolism ; ribonucleases ; ribonucleoproteins ; RNA ; RNA Precursors - metabolism ; RNA Processing, Post-Transcriptional - physiology ; Transfer RNA ; yeasts ; Zinc</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (40), p.16149-16154</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-55db6947d68fb57150267a419e07c2be62f2473444f674ab84159e6f4409db543</citedby><cites>FETCH-LOGICAL-c473t-55db6947d68fb57150267a419e07c2be62f2473444f674ab84159e6f4409db543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41763217$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41763217$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22991464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Howard, Michael J.</creatorcontrib><creatorcontrib>Lim, Wan Hsin</creatorcontrib><creatorcontrib>Fierke, Carol A.</creatorcontrib><creatorcontrib>Koutmos, Markos</creatorcontrib><title>Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of tRNA precursors. Typically these enzymes are ribonucleoproteins with a conserved RNA component responsible for catalysis. However, protein-only RNase P (PRORP) enzymes process precursor tRNAs in human mitochondria and in all tRNA-using compartments of Arabidopsis thaliana. PRORP enzymes are nuclear encoded and conserved among many eukaryotes, having evolved recently as yeast mitochondrial genomes encode an RNase P RNA. Here we report the crystal structure of PRORP1 from A. thaliana at 1.75 Å resolution, revealing a prototypical metallonuclease domain tethered to a pentatricopeptide repeat (PPR) domain by a structural zinc-binding domain. The metallonuclease domain is a unique high-resolution structure of a Nedd4-BP1, YacP Nucleases (NYN) domain that is a member of the PIN domain-like fold superfamily, including the FLAP nuclease family. The structural similarity between PRORP1 and the FLAP nuclease family suggests that they evolved from a common ancestor. Biochemical data reveal that conserved aspartate residues in PRORP1 are important for catalytic activity and metal binding and that the PPR domain also enhances activity, likely through an interaction with pre-tRNA. These results provide a foundation for understanding tRNA maturation in organelles. Furthermore, these studies allow for a molecular-level comparison of the catalytic strategies used by the only known naturally evolved protein and RNA-based catalysts that perform the same biological function, pre-tRNA maturation, thereby providing insight into the differences between the prebiotic RNA world and the present protein-dominated world.</description><subject>Active sites</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis thaliana</subject><subject>aspartic acid</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>eukaryotic cells</subject><subject>evolution</subject><subject>Evolution, Molecular</subject><subject>Humans</subject><subject>Metal ions</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - physiology</subject><subject>mitochondrial genome</subject><subject>Models, Molecular</subject><subject>prebiotics</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Ribonuclease P - chemistry</subject><subject>Ribonuclease P - metabolism</subject><subject>ribonucleases</subject><subject>ribonucleoproteins</subject><subject>RNA</subject><subject>RNA Precursors - metabolism</subject><subject>RNA Processing, Post-Transcriptional - physiology</subject><subject>Transfer RNA</subject><subject>yeasts</subject><subject>Zinc</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EomXhzAnkG1zSjp2JHV-QqoovqXwIwdlyHGfXVTZebGelnvnjONplCycunoOf99GMXkKeM7hgIOvL3WTSBeOgQHAG6gE5Ly-rBCp4SM4BuKxa5HhGnqR0CwCqaeExOeNcKYYCz8mvTz4HuwlTH70ZafRdmGY7OpMc_UpTjrPNc3R0F8Pe9y5RPyW_3uQyc6B546jbh3HOPkw0DNSabMa77O0SNdmtfYkMIZa8s3NMIVb52-cr2rxajNal5Kf1U_JoMGNyz45zRX68e_v9-kN18-X9x-urm8qirHPVNH0nFMpetEPXSNYAF9IgUw6k5Z0TfOAFRMRBSDRdi6xRTgyIoPquwXpF3hy8u7nbut66qew46l30WxPvdDBe__sz-Y1eh72uUaqmqFfk9VEQw8_Zpay3Plk3jmZyYU6atVAzbDjW_0eh5QitYlDQywNqY0gpuuG0EQO9tKyXlvV9yyXx8u9DTvyfWgtAj8CSvNcpjUUpGC6OFwfkNuUQTwwyKWrOZP0bAAK6BA</recordid><startdate>20121002</startdate><enddate>20121002</enddate><creator>Howard, Michael J.</creator><creator>Lim, Wan Hsin</creator><creator>Fierke, Carol A.</creator><creator>Koutmos, Markos</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121002</creationdate><title>Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing</title><author>Howard, Michael J. ; Lim, Wan Hsin ; Fierke, Carol A. ; Koutmos, Markos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-55db6947d68fb57150267a419e07c2be62f2473444f674ab84159e6f4409db543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active sites</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis thaliana</topic><topic>aspartic acid</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>eukaryotic cells</topic><topic>evolution</topic><topic>Evolution, Molecular</topic><topic>Humans</topic><topic>Metal ions</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - physiology</topic><topic>mitochondrial genome</topic><topic>Models, Molecular</topic><topic>prebiotics</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Ribonuclease P - chemistry</topic><topic>Ribonuclease P - metabolism</topic><topic>ribonucleases</topic><topic>ribonucleoproteins</topic><topic>RNA</topic><topic>RNA Precursors - metabolism</topic><topic>RNA Processing, Post-Transcriptional - physiology</topic><topic>Transfer RNA</topic><topic>yeasts</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, Michael J.</creatorcontrib><creatorcontrib>Lim, Wan Hsin</creatorcontrib><creatorcontrib>Fierke, Carol A.</creatorcontrib><creatorcontrib>Koutmos, Markos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, Michael J.</au><au>Lim, Wan Hsin</au><au>Fierke, Carol A.</au><au>Koutmos, Markos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-10-02</date><risdate>2012</risdate><volume>109</volume><issue>40</issue><spage>16149</spage><epage>16154</epage><pages>16149-16154</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of tRNA precursors. Typically these enzymes are ribonucleoproteins with a conserved RNA component responsible for catalysis. However, protein-only RNase P (PRORP) enzymes process precursor tRNAs in human mitochondria and in all tRNA-using compartments of Arabidopsis thaliana. PRORP enzymes are nuclear encoded and conserved among many eukaryotes, having evolved recently as yeast mitochondrial genomes encode an RNase P RNA. Here we report the crystal structure of PRORP1 from A. thaliana at 1.75 Å resolution, revealing a prototypical metallonuclease domain tethered to a pentatricopeptide repeat (PPR) domain by a structural zinc-binding domain. The metallonuclease domain is a unique high-resolution structure of a Nedd4-BP1, YacP Nucleases (NYN) domain that is a member of the PIN domain-like fold superfamily, including the FLAP nuclease family. The structural similarity between PRORP1 and the FLAP nuclease family suggests that they evolved from a common ancestor. Biochemical data reveal that conserved aspartate residues in PRORP1 are important for catalytic activity and metal binding and that the PPR domain also enhances activity, likely through an interaction with pre-tRNA. These results provide a foundation for understanding tRNA maturation in organelles. Furthermore, these studies allow for a molecular-level comparison of the catalytic strategies used by the only known naturally evolved protein and RNA-based catalysts that perform the same biological function, pre-tRNA maturation, thereby providing insight into the differences between the prebiotic RNA world and the present protein-dominated world.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22991464</pmid><doi>10.1073/pnas.1209062109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (40), p.16149-16154 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_41763217 |
source | Jstor Complete Legacy; Open Access: PubMed Central; MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Active sites Arabidopsis - enzymology Arabidopsis thaliana aspartic acid Biochemistry Biological Sciences Catalysis catalysts catalytic activity crystal structure Crystallography, X-Ray Enzymes eukaryotic cells evolution Evolution, Molecular Humans Metal ions Mitochondria Mitochondria - enzymology Mitochondria - physiology mitochondrial genome Models, Molecular prebiotics Protein Structure, Tertiary Proteins Ribonuclease P - chemistry Ribonuclease P - metabolism ribonucleases ribonucleoproteins RNA RNA Precursors - metabolism RNA Processing, Post-Transcriptional - physiology Transfer RNA yeasts Zinc |
title | Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20ribonuclease%20P%20structure%20provides%20insight%20into%20the%20evolution%20of%20catalytic%20strategies%20for%20precursor-tRNA%205'%20processing&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Howard,%20Michael%20J.&rft.date=2012-10-02&rft.volume=109&rft.issue=40&rft.spage=16149&rft.epage=16154&rft.pages=16149-16154&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1209062109&rft_dat=%3Cjstor_pubme%3E41763217%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082408910&rft_id=info:pmid/22991464&rft_jstor_id=41763217&rfr_iscdi=true |