ψα-ESTIMATES FOR MARGINALS OF LOG-CONCAVE PROBABILITY MEASURES

We show that a random marginal πF (μ) of an isotropie log-concave probability measure μ on ℝ n exhibits better ψ α -behavior. For a natural variant ψ' α of the standard ψ α -norm we show the following: (i) If $k \le \sqrt n $ , then for a random F ∊ G n,k we have that πF(μ) is a ψ'₂-measur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2012-04, Vol.140 (4), p.1297-1308
Hauptverfasser: GIANNOPOULOS, A., PAOURIS, G., VALETTAS, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1308
container_issue 4
container_start_page 1297
container_title Proceedings of the American Mathematical Society
container_volume 140
creator GIANNOPOULOS, A.
PAOURIS, G.
VALETTAS, P.
description We show that a random marginal πF (μ) of an isotropie log-concave probability measure μ on ℝ n exhibits better ψ α -behavior. For a natural variant ψ' α of the standard ψ α -norm we show the following: (i) If $k \le \sqrt n $ , then for a random F ∊ G n,k we have that πF(μ) is a ψ'₂-measure. We complement this result by showing that a random πF(μ) is, at the same time, super-Gaussian. (ii) If k = n δ , ½ < δ < 1, then for a random F ∊ G n,k we have that πF(μ) is a ψ' α(δ) -measure, where $\[\alpha \left( \delta \right) = \frac{{2\delta }}{{3\delta - 1}}]$ .
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_41505582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41505582</jstor_id><sourcerecordid>41505582</sourcerecordid><originalsourceid>FETCH-jstor_primary_415055823</originalsourceid><addsrcrecordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GRzOd5zbqOsaHOLp6xjiGqzg5h-k4OsY5O7p5-gTrODvpuDj767r7O_n7BjmqhAQ5O_k6OTp4xkSqeDr6hgcGuQazMPAmpaYU5zKC6W5GWTdXEOcPXSzikvyi-ILijJzE4sq400MTQ1MTS2MjAnJAwCIgjFL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ψα-ESTIMATES FOR MARGINALS OF LOG-CONCAVE PROBABILITY MEASURES</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>GIANNOPOULOS, A. ; PAOURIS, G. ; VALETTAS, P.</creator><creatorcontrib>GIANNOPOULOS, A. ; PAOURIS, G. ; VALETTAS, P.</creatorcontrib><description>We show that a random marginal πF (μ) of an isotropie log-concave probability measure μ on ℝ n exhibits better ψ α -behavior. For a natural variant ψ' α of the standard ψ α -norm we show the following: (i) If $k \le \sqrt n $ , then for a random F ∊ G n,k we have that πF(μ) is a ψ'₂-measure. We complement this result by showing that a random πF(μ) is, at the same time, super-Gaussian. (ii) If k = n δ , ½ &lt; δ &lt; 1, then for a random F ∊ G n,k we have that πF(μ) is a ψ' α(δ) -measure, where $\[\alpha \left( \delta \right) = \frac{{2\delta }}{{3\delta - 1}}]$ .</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Asymptotic theory ; Central limit theorem ; College mathematics ; Density ; Functional analysis ; Mathematical constants ; Mathematical functions ; Mathematical inequalities ; Mathematical theorems</subject><ispartof>Proceedings of the American Mathematical Society, 2012-04, Vol.140 (4), p.1297-1308</ispartof><rights>2012 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41505582$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41505582$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>GIANNOPOULOS, A.</creatorcontrib><creatorcontrib>PAOURIS, G.</creatorcontrib><creatorcontrib>VALETTAS, P.</creatorcontrib><title>ψα-ESTIMATES FOR MARGINALS OF LOG-CONCAVE PROBABILITY MEASURES</title><title>Proceedings of the American Mathematical Society</title><description>We show that a random marginal πF (μ) of an isotropie log-concave probability measure μ on ℝ n exhibits better ψ α -behavior. For a natural variant ψ' α of the standard ψ α -norm we show the following: (i) If $k \le \sqrt n $ , then for a random F ∊ G n,k we have that πF(μ) is a ψ'₂-measure. We complement this result by showing that a random πF(μ) is, at the same time, super-Gaussian. (ii) If k = n δ , ½ &lt; δ &lt; 1, then for a random F ∊ G n,k we have that πF(μ) is a ψ' α(δ) -measure, where $\[\alpha \left( \delta \right) = \frac{{2\delta }}{{3\delta - 1}}]$ .</description><subject>Asymptotic theory</subject><subject>Central limit theorem</subject><subject>College mathematics</subject><subject>Density</subject><subject>Functional analysis</subject><subject>Mathematical constants</subject><subject>Mathematical functions</subject><subject>Mathematical inequalities</subject><subject>Mathematical theorems</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GRzOd5zbqOsaHOLp6xjiGqzg5h-k4OsY5O7p5-gTrODvpuDj767r7O_n7BjmqhAQ5O_k6OTp4xkSqeDr6hgcGuQazMPAmpaYU5zKC6W5GWTdXEOcPXSzikvyi-ILijJzE4sq400MTQ1MTS2MjAnJAwCIgjFL</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>GIANNOPOULOS, A.</creator><creator>PAOURIS, G.</creator><creator>VALETTAS, P.</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20120401</creationdate><title>ψα-ESTIMATES FOR MARGINALS OF LOG-CONCAVE PROBABILITY MEASURES</title><author>GIANNOPOULOS, A. ; PAOURIS, G. ; VALETTAS, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_415055823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic theory</topic><topic>Central limit theorem</topic><topic>College mathematics</topic><topic>Density</topic><topic>Functional analysis</topic><topic>Mathematical constants</topic><topic>Mathematical functions</topic><topic>Mathematical inequalities</topic><topic>Mathematical theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GIANNOPOULOS, A.</creatorcontrib><creatorcontrib>PAOURIS, G.</creatorcontrib><creatorcontrib>VALETTAS, P.</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GIANNOPOULOS, A.</au><au>PAOURIS, G.</au><au>VALETTAS, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ψα-ESTIMATES FOR MARGINALS OF LOG-CONCAVE PROBABILITY MEASURES</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>140</volume><issue>4</issue><spage>1297</spage><epage>1308</epage><pages>1297-1308</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We show that a random marginal πF (μ) of an isotropie log-concave probability measure μ on ℝ n exhibits better ψ α -behavior. For a natural variant ψ' α of the standard ψ α -norm we show the following: (i) If $k \le \sqrt n $ , then for a random F ∊ G n,k we have that πF(μ) is a ψ'₂-measure. We complement this result by showing that a random πF(μ) is, at the same time, super-Gaussian. (ii) If k = n δ , ½ &lt; δ &lt; 1, then for a random F ∊ G n,k we have that πF(μ) is a ψ' α(δ) -measure, where $\[\alpha \left( \delta \right) = \frac{{2\delta }}{{3\delta - 1}}]$ .</abstract><pub>American Mathematical Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2012-04, Vol.140 (4), p.1297-1308
issn 0002-9939
1088-6826
language eng
recordid cdi_jstor_primary_41505582
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects Asymptotic theory
Central limit theorem
College mathematics
Density
Functional analysis
Mathematical constants
Mathematical functions
Mathematical inequalities
Mathematical theorems
title ψα-ESTIMATES FOR MARGINALS OF LOG-CONCAVE PROBABILITY MEASURES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CF%88%CE%B1-ESTIMATES%20FOR%20MARGINALS%20OF%20LOG-CONCAVE%20PROBABILITY%20MEASURES&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=GIANNOPOULOS,%20A.&rft.date=2012-04-01&rft.volume=140&rft.issue=4&rft.spage=1297&rft.epage=1308&rft.pages=1297-1308&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/&rft_dat=%3Cjstor%3E41505582%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41505582&rfr_iscdi=true