Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles
Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-10, Vol.108 (40), p.16539-16544 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16544 |
---|---|
container_issue | 40 |
container_start_page | 16539 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Choi, James J Selert, Kirsten Vlachos, Fotios Wong, Anna Konofagou, Elisa E |
description | Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the delivery characteristics without compromising safety has proven to be difficult. We propose a new basis for ultrasonic pulse design in drug delivery through the blood–brain barrier (BBB) that uses principles of probability of occurrence and spatial distribution of cavitation in contrast to the conventionally applied magnitude of cavitation. The efficacy of using extremely short (2.3 µs) pulses was evaluated in 27 distinct acoustic parameter sets at low peak-rarefactional pressures (0.51 MPa or lower). The left hippocampus and lateral thalamus were noninvasively sonicated after administration of Definity microbubbles. Disruption of the BBB was confirmed by delivery of fluorescently tagged 3-, 10-, or 70-kDa dextrans. Under some conditions, dextrans were distributed homogeneously throughout the targeted region and accumulated at specific hippocampal landmarks and neuronal cells and axons. No histological damage was observed at the most effective parameter set. Our results have broadened the design space of parameters toward a wider safety window that may also increase vascular permeability. The study also uncovered a set of parameters that enhances the dose and distribution of molecular delivery, overcoming standard trade-offs in avoiding associated damage. Given the short pulses used similar to diagnostic ultrasound, new critical parameters were also elucidated to clearly separate therapeutic ultrasound from disruption-free diagnostic ultrasound. |
doi_str_mv | 10.1073/pnas.1105116108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_41321736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41321736</jstor_id><sourcerecordid>41321736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-8f7cd49f51f71aca3a65350166eeff6d72a4df8d275ddbeddbf28cf1888cbd5b3</originalsourceid><addsrcrecordid>eNp9kjtvFDEUhUcIRJZATQWMaKCZxNePGbtBQhEvKYIC0tBYHj82XnntxZ5ZKfx6vNllAxQUlovznWP7XDfNU0BngAZyvomqnAEgBtAD4veaBSABXU8Fut8sEMJDxymmJ82jUlYIIcE4eticYBAECYoXzffPKfq4VcVvbauiaUPSKvif1rTRzjlFFVpjQ1XzTTsXH5dtuU55aucwZVWqWbebORRbbt1rr3Ma53EMtjxuHjhVlSeH_bS5ev_u28XH7vLLh08Xby87zbiYOu4GbahwDNwASiuiekYYgr631rneDFhR47jBAzNmtHU5zLUDzrkeDRvJafNmn7uZx7U12sZ6syA32a9VvpFJefm3Ev21XKatJMAFYrQGvDoE5PRjtmWSa1-0DUFFm-YiuegZFgSTSr7-L1nLJ5QRjFFFX_6DrtKca523eb0QhIkKne-h2lop2brjrQHJ3YDlbsDybsDV8fzPxx753xOtQHsAds67OC5pjazV7k59tkdWZUr5yFAgGAbSV_3FXncqSbXMvsirrxgBrR-IAwJEfgE16MHm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896699359</pqid></control><display><type>article</type><title>Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Choi, James J ; Selert, Kirsten ; Vlachos, Fotios ; Wong, Anna ; Konofagou, Elisa E</creator><creatorcontrib>Choi, James J ; Selert, Kirsten ; Vlachos, Fotios ; Wong, Anna ; Konofagou, Elisa E</creatorcontrib><description>Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the delivery characteristics without compromising safety has proven to be difficult. We propose a new basis for ultrasonic pulse design in drug delivery through the blood–brain barrier (BBB) that uses principles of probability of occurrence and spatial distribution of cavitation in contrast to the conventionally applied magnitude of cavitation. The efficacy of using extremely short (2.3 µs) pulses was evaluated in 27 distinct acoustic parameter sets at low peak-rarefactional pressures (0.51 MPa or lower). The left hippocampus and lateral thalamus were noninvasively sonicated after administration of Definity microbubbles. Disruption of the BBB was confirmed by delivery of fluorescently tagged 3-, 10-, or 70-kDa dextrans. Under some conditions, dextrans were distributed homogeneously throughout the targeted region and accumulated at specific hippocampal landmarks and neuronal cells and axons. No histological damage was observed at the most effective parameter set. Our results have broadened the design space of parameters toward a wider safety window that may also increase vascular permeability. The study also uncovered a set of parameters that enhances the dose and distribution of molecular delivery, overcoming standard trade-offs in avoiding associated damage. Given the short pulses used similar to diagnostic ultrasound, new critical parameters were also elucidated to clearly separate therapeutic ultrasound from disruption-free diagnostic ultrasound.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1105116108</identifier><identifier>PMID: 21930942</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acoustics ; Analysis of Variance ; Animals ; Axon guidance ; axons ; Biological Sciences ; Blood brain barrier ; Brain ; Capillary Permeability ; Cavitation ; Cavitation flow ; Dextran ; Dextrans ; Dosage ; Drug delivery ; Drug delivery systems ; Drug Delivery Systems - instrumentation ; Drug Delivery Systems - methods ; Drug development ; drugs ; Fluorescence ; Hippocampus ; Hippocampus - cytology ; Hippocampus - physiology ; Male ; Mice ; Mice, Inbred C57BL ; microbubbles ; Microbubbles - therapeutic use ; Microvessels ; Neurons ; Neurons - metabolism ; Permeability ; Physical Sciences ; Pressure ; Spatial distribution ; Thalamus ; Thalamus - cytology ; Thalamus - physiology ; Ultrasonic imaging ; Ultrasonics ; Ultrasonics - methods ; Ultrasonography ; Ultrasound</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (40), p.16539-16544</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 4, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-8f7cd49f51f71aca3a65350166eeff6d72a4df8d275ddbeddbf28cf1888cbd5b3</citedby><cites>FETCH-LOGICAL-c589t-8f7cd49f51f71aca3a65350166eeff6d72a4df8d275ddbeddbf28cf1888cbd5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41321736$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41321736$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21930942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, James J</creatorcontrib><creatorcontrib>Selert, Kirsten</creatorcontrib><creatorcontrib>Vlachos, Fotios</creatorcontrib><creatorcontrib>Wong, Anna</creatorcontrib><creatorcontrib>Konofagou, Elisa E</creatorcontrib><title>Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the delivery characteristics without compromising safety has proven to be difficult. We propose a new basis for ultrasonic pulse design in drug delivery through the blood–brain barrier (BBB) that uses principles of probability of occurrence and spatial distribution of cavitation in contrast to the conventionally applied magnitude of cavitation. The efficacy of using extremely short (2.3 µs) pulses was evaluated in 27 distinct acoustic parameter sets at low peak-rarefactional pressures (0.51 MPa or lower). The left hippocampus and lateral thalamus were noninvasively sonicated after administration of Definity microbubbles. Disruption of the BBB was confirmed by delivery of fluorescently tagged 3-, 10-, or 70-kDa dextrans. Under some conditions, dextrans were distributed homogeneously throughout the targeted region and accumulated at specific hippocampal landmarks and neuronal cells and axons. No histological damage was observed at the most effective parameter set. Our results have broadened the design space of parameters toward a wider safety window that may also increase vascular permeability. The study also uncovered a set of parameters that enhances the dose and distribution of molecular delivery, overcoming standard trade-offs in avoiding associated damage. Given the short pulses used similar to diagnostic ultrasound, new critical parameters were also elucidated to clearly separate therapeutic ultrasound from disruption-free diagnostic ultrasound.</description><subject>Acoustics</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Axon guidance</subject><subject>axons</subject><subject>Biological Sciences</subject><subject>Blood brain barrier</subject><subject>Brain</subject><subject>Capillary Permeability</subject><subject>Cavitation</subject><subject>Cavitation flow</subject><subject>Dextran</subject><subject>Dextrans</subject><subject>Dosage</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Drug Delivery Systems - methods</subject><subject>Drug development</subject><subject>drugs</subject><subject>Fluorescence</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>microbubbles</subject><subject>Microbubbles - therapeutic use</subject><subject>Microvessels</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Pressure</subject><subject>Spatial distribution</subject><subject>Thalamus</subject><subject>Thalamus - cytology</subject><subject>Thalamus - physiology</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonics</subject><subject>Ultrasonics - methods</subject><subject>Ultrasonography</subject><subject>Ultrasound</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kjtvFDEUhUcIRJZATQWMaKCZxNePGbtBQhEvKYIC0tBYHj82XnntxZ5ZKfx6vNllAxQUlovznWP7XDfNU0BngAZyvomqnAEgBtAD4veaBSABXU8Fut8sEMJDxymmJ82jUlYIIcE4eticYBAECYoXzffPKfq4VcVvbauiaUPSKvif1rTRzjlFFVpjQ1XzTTsXH5dtuU55aucwZVWqWbebORRbbt1rr3Ma53EMtjxuHjhVlSeH_bS5ev_u28XH7vLLh08Xby87zbiYOu4GbahwDNwASiuiekYYgr631rneDFhR47jBAzNmtHU5zLUDzrkeDRvJafNmn7uZx7U12sZ6syA32a9VvpFJefm3Ev21XKatJMAFYrQGvDoE5PRjtmWSa1-0DUFFm-YiuegZFgSTSr7-L1nLJ5QRjFFFX_6DrtKca523eb0QhIkKne-h2lop2brjrQHJ3YDlbsDybsDV8fzPxx753xOtQHsAds67OC5pjazV7k59tkdWZUr5yFAgGAbSV_3FXncqSbXMvsirrxgBrR-IAwJEfgE16MHm</recordid><startdate>20111004</startdate><enddate>20111004</enddate><creator>Choi, James J</creator><creator>Selert, Kirsten</creator><creator>Vlachos, Fotios</creator><creator>Wong, Anna</creator><creator>Konofagou, Elisa E</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111004</creationdate><title>Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles</title><author>Choi, James J ; Selert, Kirsten ; Vlachos, Fotios ; Wong, Anna ; Konofagou, Elisa E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-8f7cd49f51f71aca3a65350166eeff6d72a4df8d275ddbeddbf28cf1888cbd5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustics</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Axon guidance</topic><topic>axons</topic><topic>Biological Sciences</topic><topic>Blood brain barrier</topic><topic>Brain</topic><topic>Capillary Permeability</topic><topic>Cavitation</topic><topic>Cavitation flow</topic><topic>Dextran</topic><topic>Dextrans</topic><topic>Dosage</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Drug Delivery Systems - methods</topic><topic>Drug development</topic><topic>drugs</topic><topic>Fluorescence</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>microbubbles</topic><topic>Microbubbles - therapeutic use</topic><topic>Microvessels</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Pressure</topic><topic>Spatial distribution</topic><topic>Thalamus</topic><topic>Thalamus - cytology</topic><topic>Thalamus - physiology</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonics</topic><topic>Ultrasonics - methods</topic><topic>Ultrasonography</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, James J</creatorcontrib><creatorcontrib>Selert, Kirsten</creatorcontrib><creatorcontrib>Vlachos, Fotios</creatorcontrib><creatorcontrib>Wong, Anna</creatorcontrib><creatorcontrib>Konofagou, Elisa E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, James J</au><au>Selert, Kirsten</au><au>Vlachos, Fotios</au><au>Wong, Anna</au><au>Konofagou, Elisa E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-10-04</date><risdate>2011</risdate><volume>108</volume><issue>40</issue><spage>16539</spage><epage>16544</epage><pages>16539-16544</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the delivery characteristics without compromising safety has proven to be difficult. We propose a new basis for ultrasonic pulse design in drug delivery through the blood–brain barrier (BBB) that uses principles of probability of occurrence and spatial distribution of cavitation in contrast to the conventionally applied magnitude of cavitation. The efficacy of using extremely short (2.3 µs) pulses was evaluated in 27 distinct acoustic parameter sets at low peak-rarefactional pressures (0.51 MPa or lower). The left hippocampus and lateral thalamus were noninvasively sonicated after administration of Definity microbubbles. Disruption of the BBB was confirmed by delivery of fluorescently tagged 3-, 10-, or 70-kDa dextrans. Under some conditions, dextrans were distributed homogeneously throughout the targeted region and accumulated at specific hippocampal landmarks and neuronal cells and axons. No histological damage was observed at the most effective parameter set. Our results have broadened the design space of parameters toward a wider safety window that may also increase vascular permeability. The study also uncovered a set of parameters that enhances the dose and distribution of molecular delivery, overcoming standard trade-offs in avoiding associated damage. Given the short pulses used similar to diagnostic ultrasound, new critical parameters were also elucidated to clearly separate therapeutic ultrasound from disruption-free diagnostic ultrasound.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21930942</pmid><doi>10.1073/pnas.1105116108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (40), p.16539-16544 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_41321736 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Acoustics Analysis of Variance Animals Axon guidance axons Biological Sciences Blood brain barrier Brain Capillary Permeability Cavitation Cavitation flow Dextran Dextrans Dosage Drug delivery Drug delivery systems Drug Delivery Systems - instrumentation Drug Delivery Systems - methods Drug development drugs Fluorescence Hippocampus Hippocampus - cytology Hippocampus - physiology Male Mice Mice, Inbred C57BL microbubbles Microbubbles - therapeutic use Microvessels Neurons Neurons - metabolism Permeability Physical Sciences Pressure Spatial distribution Thalamus Thalamus - cytology Thalamus - physiology Ultrasonic imaging Ultrasonics Ultrasonics - methods Ultrasonography Ultrasound |
title | Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20and%20localized%20neuronal%20delivery%20using%20short%20ultrasonic%20pulses%20and%20microbubbles&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Choi,%20James%20J&rft.date=2011-10-04&rft.volume=108&rft.issue=40&rft.spage=16539&rft.epage=16544&rft.pages=16539-16544&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1105116108&rft_dat=%3Cjstor_proqu%3E41321736%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896699359&rft_id=info:pmid/21930942&rft_jstor_id=41321736&rfr_iscdi=true |