Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles

Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-10, Vol.108 (40), p.16539-16544
Hauptverfasser: Choi, James J, Selert, Kirsten, Vlachos, Fotios, Wong, Anna, Konofagou, Elisa E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16544
container_issue 40
container_start_page 16539
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Choi, James J
Selert, Kirsten
Vlachos, Fotios
Wong, Anna
Konofagou, Elisa E
description Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the delivery characteristics without compromising safety has proven to be difficult. We propose a new basis for ultrasonic pulse design in drug delivery through the blood–brain barrier (BBB) that uses principles of probability of occurrence and spatial distribution of cavitation in contrast to the conventionally applied magnitude of cavitation. The efficacy of using extremely short (2.3 µs) pulses was evaluated in 27 distinct acoustic parameter sets at low peak-rarefactional pressures (0.51 MPa or lower). The left hippocampus and lateral thalamus were noninvasively sonicated after administration of Definity microbubbles. Disruption of the BBB was confirmed by delivery of fluorescently tagged 3-, 10-, or 70-kDa dextrans. Under some conditions, dextrans were distributed homogeneously throughout the targeted region and accumulated at specific hippocampal landmarks and neuronal cells and axons. No histological damage was observed at the most effective parameter set. Our results have broadened the design space of parameters toward a wider safety window that may also increase vascular permeability. The study also uncovered a set of parameters that enhances the dose and distribution of molecular delivery, overcoming standard trade-offs in avoiding associated damage. Given the short pulses used similar to diagnostic ultrasound, new critical parameters were also elucidated to clearly separate therapeutic ultrasound from disruption-free diagnostic ultrasound.
doi_str_mv 10.1073/pnas.1105116108
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_41321736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41321736</jstor_id><sourcerecordid>41321736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-8f7cd49f51f71aca3a65350166eeff6d72a4df8d275ddbeddbf28cf1888cbd5b3</originalsourceid><addsrcrecordid>eNp9kjtvFDEUhUcIRJZATQWMaKCZxNePGbtBQhEvKYIC0tBYHj82XnntxZ5ZKfx6vNllAxQUlovznWP7XDfNU0BngAZyvomqnAEgBtAD4veaBSABXU8Fut8sEMJDxymmJ82jUlYIIcE4eticYBAECYoXzffPKfq4VcVvbauiaUPSKvif1rTRzjlFFVpjQ1XzTTsXH5dtuU55aucwZVWqWbebORRbbt1rr3Ma53EMtjxuHjhVlSeH_bS5ev_u28XH7vLLh08Xby87zbiYOu4GbahwDNwASiuiekYYgr631rneDFhR47jBAzNmtHU5zLUDzrkeDRvJafNmn7uZx7U12sZ6syA32a9VvpFJefm3Ev21XKatJMAFYrQGvDoE5PRjtmWSa1-0DUFFm-YiuegZFgSTSr7-L1nLJ5QRjFFFX_6DrtKca523eb0QhIkKne-h2lop2brjrQHJ3YDlbsDybsDV8fzPxx753xOtQHsAds67OC5pjazV7k59tkdWZUr5yFAgGAbSV_3FXncqSbXMvsirrxgBrR-IAwJEfgE16MHm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896699359</pqid></control><display><type>article</type><title>Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Choi, James J ; Selert, Kirsten ; Vlachos, Fotios ; Wong, Anna ; Konofagou, Elisa E</creator><creatorcontrib>Choi, James J ; Selert, Kirsten ; Vlachos, Fotios ; Wong, Anna ; Konofagou, Elisa E</creatorcontrib><description>Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the delivery characteristics without compromising safety has proven to be difficult. We propose a new basis for ultrasonic pulse design in drug delivery through the blood–brain barrier (BBB) that uses principles of probability of occurrence and spatial distribution of cavitation in contrast to the conventionally applied magnitude of cavitation. The efficacy of using extremely short (2.3 µs) pulses was evaluated in 27 distinct acoustic parameter sets at low peak-rarefactional pressures (0.51 MPa or lower). The left hippocampus and lateral thalamus were noninvasively sonicated after administration of Definity microbubbles. Disruption of the BBB was confirmed by delivery of fluorescently tagged 3-, 10-, or 70-kDa dextrans. Under some conditions, dextrans were distributed homogeneously throughout the targeted region and accumulated at specific hippocampal landmarks and neuronal cells and axons. No histological damage was observed at the most effective parameter set. Our results have broadened the design space of parameters toward a wider safety window that may also increase vascular permeability. The study also uncovered a set of parameters that enhances the dose and distribution of molecular delivery, overcoming standard trade-offs in avoiding associated damage. Given the short pulses used similar to diagnostic ultrasound, new critical parameters were also elucidated to clearly separate therapeutic ultrasound from disruption-free diagnostic ultrasound.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1105116108</identifier><identifier>PMID: 21930942</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acoustics ; Analysis of Variance ; Animals ; Axon guidance ; axons ; Biological Sciences ; Blood brain barrier ; Brain ; Capillary Permeability ; Cavitation ; Cavitation flow ; Dextran ; Dextrans ; Dosage ; Drug delivery ; Drug delivery systems ; Drug Delivery Systems - instrumentation ; Drug Delivery Systems - methods ; Drug development ; drugs ; Fluorescence ; Hippocampus ; Hippocampus - cytology ; Hippocampus - physiology ; Male ; Mice ; Mice, Inbred C57BL ; microbubbles ; Microbubbles - therapeutic use ; Microvessels ; Neurons ; Neurons - metabolism ; Permeability ; Physical Sciences ; Pressure ; Spatial distribution ; Thalamus ; Thalamus - cytology ; Thalamus - physiology ; Ultrasonic imaging ; Ultrasonics ; Ultrasonics - methods ; Ultrasonography ; Ultrasound</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (40), p.16539-16544</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 4, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-8f7cd49f51f71aca3a65350166eeff6d72a4df8d275ddbeddbf28cf1888cbd5b3</citedby><cites>FETCH-LOGICAL-c589t-8f7cd49f51f71aca3a65350166eeff6d72a4df8d275ddbeddbf28cf1888cbd5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41321736$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41321736$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21930942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, James J</creatorcontrib><creatorcontrib>Selert, Kirsten</creatorcontrib><creatorcontrib>Vlachos, Fotios</creatorcontrib><creatorcontrib>Wong, Anna</creatorcontrib><creatorcontrib>Konofagou, Elisa E</creatorcontrib><title>Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the delivery characteristics without compromising safety has proven to be difficult. We propose a new basis for ultrasonic pulse design in drug delivery through the blood–brain barrier (BBB) that uses principles of probability of occurrence and spatial distribution of cavitation in contrast to the conventionally applied magnitude of cavitation. The efficacy of using extremely short (2.3 µs) pulses was evaluated in 27 distinct acoustic parameter sets at low peak-rarefactional pressures (0.51 MPa or lower). The left hippocampus and lateral thalamus were noninvasively sonicated after administration of Definity microbubbles. Disruption of the BBB was confirmed by delivery of fluorescently tagged 3-, 10-, or 70-kDa dextrans. Under some conditions, dextrans were distributed homogeneously throughout the targeted region and accumulated at specific hippocampal landmarks and neuronal cells and axons. No histological damage was observed at the most effective parameter set. Our results have broadened the design space of parameters toward a wider safety window that may also increase vascular permeability. The study also uncovered a set of parameters that enhances the dose and distribution of molecular delivery, overcoming standard trade-offs in avoiding associated damage. Given the short pulses used similar to diagnostic ultrasound, new critical parameters were also elucidated to clearly separate therapeutic ultrasound from disruption-free diagnostic ultrasound.</description><subject>Acoustics</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Axon guidance</subject><subject>axons</subject><subject>Biological Sciences</subject><subject>Blood brain barrier</subject><subject>Brain</subject><subject>Capillary Permeability</subject><subject>Cavitation</subject><subject>Cavitation flow</subject><subject>Dextran</subject><subject>Dextrans</subject><subject>Dosage</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Drug Delivery Systems - methods</subject><subject>Drug development</subject><subject>drugs</subject><subject>Fluorescence</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>microbubbles</subject><subject>Microbubbles - therapeutic use</subject><subject>Microvessels</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Pressure</subject><subject>Spatial distribution</subject><subject>Thalamus</subject><subject>Thalamus - cytology</subject><subject>Thalamus - physiology</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonics</subject><subject>Ultrasonics - methods</subject><subject>Ultrasonography</subject><subject>Ultrasound</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kjtvFDEUhUcIRJZATQWMaKCZxNePGbtBQhEvKYIC0tBYHj82XnntxZ5ZKfx6vNllAxQUlovznWP7XDfNU0BngAZyvomqnAEgBtAD4veaBSABXU8Fut8sEMJDxymmJ82jUlYIIcE4eticYBAECYoXzffPKfq4VcVvbauiaUPSKvif1rTRzjlFFVpjQ1XzTTsXH5dtuU55aucwZVWqWbebORRbbt1rr3Ma53EMtjxuHjhVlSeH_bS5ev_u28XH7vLLh08Xby87zbiYOu4GbahwDNwASiuiekYYgr631rneDFhR47jBAzNmtHU5zLUDzrkeDRvJafNmn7uZx7U12sZ6syA32a9VvpFJefm3Ev21XKatJMAFYrQGvDoE5PRjtmWSa1-0DUFFm-YiuegZFgSTSr7-L1nLJ5QRjFFFX_6DrtKca523eb0QhIkKne-h2lop2brjrQHJ3YDlbsDybsDV8fzPxx753xOtQHsAds67OC5pjazV7k59tkdWZUr5yFAgGAbSV_3FXncqSbXMvsirrxgBrR-IAwJEfgE16MHm</recordid><startdate>20111004</startdate><enddate>20111004</enddate><creator>Choi, James J</creator><creator>Selert, Kirsten</creator><creator>Vlachos, Fotios</creator><creator>Wong, Anna</creator><creator>Konofagou, Elisa E</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111004</creationdate><title>Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles</title><author>Choi, James J ; Selert, Kirsten ; Vlachos, Fotios ; Wong, Anna ; Konofagou, Elisa E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-8f7cd49f51f71aca3a65350166eeff6d72a4df8d275ddbeddbf28cf1888cbd5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustics</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Axon guidance</topic><topic>axons</topic><topic>Biological Sciences</topic><topic>Blood brain barrier</topic><topic>Brain</topic><topic>Capillary Permeability</topic><topic>Cavitation</topic><topic>Cavitation flow</topic><topic>Dextran</topic><topic>Dextrans</topic><topic>Dosage</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Drug Delivery Systems - methods</topic><topic>Drug development</topic><topic>drugs</topic><topic>Fluorescence</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>microbubbles</topic><topic>Microbubbles - therapeutic use</topic><topic>Microvessels</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Pressure</topic><topic>Spatial distribution</topic><topic>Thalamus</topic><topic>Thalamus - cytology</topic><topic>Thalamus - physiology</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonics</topic><topic>Ultrasonics - methods</topic><topic>Ultrasonography</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, James J</creatorcontrib><creatorcontrib>Selert, Kirsten</creatorcontrib><creatorcontrib>Vlachos, Fotios</creatorcontrib><creatorcontrib>Wong, Anna</creatorcontrib><creatorcontrib>Konofagou, Elisa E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, James J</au><au>Selert, Kirsten</au><au>Vlachos, Fotios</au><au>Wong, Anna</au><au>Konofagou, Elisa E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-10-04</date><risdate>2011</risdate><volume>108</volume><issue>40</issue><spage>16539</spage><epage>16544</epage><pages>16539-16544</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the delivery characteristics without compromising safety has proven to be difficult. We propose a new basis for ultrasonic pulse design in drug delivery through the blood–brain barrier (BBB) that uses principles of probability of occurrence and spatial distribution of cavitation in contrast to the conventionally applied magnitude of cavitation. The efficacy of using extremely short (2.3 µs) pulses was evaluated in 27 distinct acoustic parameter sets at low peak-rarefactional pressures (0.51 MPa or lower). The left hippocampus and lateral thalamus were noninvasively sonicated after administration of Definity microbubbles. Disruption of the BBB was confirmed by delivery of fluorescently tagged 3-, 10-, or 70-kDa dextrans. Under some conditions, dextrans were distributed homogeneously throughout the targeted region and accumulated at specific hippocampal landmarks and neuronal cells and axons. No histological damage was observed at the most effective parameter set. Our results have broadened the design space of parameters toward a wider safety window that may also increase vascular permeability. The study also uncovered a set of parameters that enhances the dose and distribution of molecular delivery, overcoming standard trade-offs in avoiding associated damage. Given the short pulses used similar to diagnostic ultrasound, new critical parameters were also elucidated to clearly separate therapeutic ultrasound from disruption-free diagnostic ultrasound.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21930942</pmid><doi>10.1073/pnas.1105116108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (40), p.16539-16544
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_41321736
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Acoustics
Analysis of Variance
Animals
Axon guidance
axons
Biological Sciences
Blood brain barrier
Brain
Capillary Permeability
Cavitation
Cavitation flow
Dextran
Dextrans
Dosage
Drug delivery
Drug delivery systems
Drug Delivery Systems - instrumentation
Drug Delivery Systems - methods
Drug development
drugs
Fluorescence
Hippocampus
Hippocampus - cytology
Hippocampus - physiology
Male
Mice
Mice, Inbred C57BL
microbubbles
Microbubbles - therapeutic use
Microvessels
Neurons
Neurons - metabolism
Permeability
Physical Sciences
Pressure
Spatial distribution
Thalamus
Thalamus - cytology
Thalamus - physiology
Ultrasonic imaging
Ultrasonics
Ultrasonics - methods
Ultrasonography
Ultrasound
title Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20and%20localized%20neuronal%20delivery%20using%20short%20ultrasonic%20pulses%20and%20microbubbles&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Choi,%20James%20J&rft.date=2011-10-04&rft.volume=108&rft.issue=40&rft.spage=16539&rft.epage=16544&rft.pages=16539-16544&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1105116108&rft_dat=%3Cjstor_proqu%3E41321736%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896699359&rft_id=info:pmid/21930942&rft_jstor_id=41321736&rfr_iscdi=true