Cardiolipin-based respiratory complex activation in bacteria

Anionic lipids play a variety of key roles in membrane function, including functional and structural effects on respiratory complexes. However, little is known about the molecular basis of these lipid-protein interactions. In this study, NarGHI, an anaerobic respiratory complex of Escherichia coli,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-05, Vol.108 (19), p.7781-7786
Hauptverfasser: Arias-Cartin, Rodrigo, Grimaldi, Stéphane, Pommier, Janine, Lanciano, Pascal, Schaefer, Cédric, Arnoux, Pascal, Giordano, Gérard, Guigliarelli, Bruno, Magalon, Axel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7786
container_issue 19
container_start_page 7781
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Arias-Cartin, Rodrigo
Grimaldi, Stéphane
Pommier, Janine
Lanciano, Pascal
Schaefer, Cédric
Arnoux, Pascal
Giordano, Gérard
Guigliarelli, Bruno
Magalon, Axel
description Anionic lipids play a variety of key roles in membrane function, including functional and structural effects on respiratory complexes. However, little is known about the molecular basis of these lipid-protein interactions. In this study, NarGHI, an anaerobic respiratory complex of Escherichia coli, has been used to investigate the relations in between membrane-bound proteins with phospholipids. Activity of the NarGHI complex is enhanced by anionic phospholipids both in vivo and in vitro. The anionic cardiolipin tightly associates with the NarGHI complex and is the most effective phospholipid to restore functionality of a nearly inactive detergent-solubilized enzyme complex. A specific cardiolipin-binding site is identified on the basis of the available X-ray diffraction data and of site-directed mutagenesis experiment. One acyl chain of cardiolipin is in close proximity to the heme bD center and is responsible for structural adjustments of bD and of the adjacent quinol substrate binding site. Finally, cardiolipin binding tunes the interaction with the quinol substrate. Together, our results provide a molecular basis for the activation of a bacterial respiratory complex by cardiolipin.
doi_str_mv 10.1073/pnas.1010427108
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_41242263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41242263</jstor_id><sourcerecordid>41242263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-35c5d316f93fc9a65c4e1b43e8d4b1a7f081bf22c19a74f4baa75872e28ff6883</originalsourceid><addsrcrecordid>eNpdkcFvFCEUh4mxsevq2ZM68eRl7HvADJA0Jmaj1qSJB-2ZMAxUNrPDCLON_e9ls-tu64EA4Xu_vMdHyCuEDwiCXUyjyeWEwKlAkE_IAkFh3XIFT8kCgIpacsrPyfOc1wCgGgnPyDnFBqVUakEuVyb1IQ5hCmPdmez6Krk8hWTmmO4rGzfT4P5Uxs7hzswhjlUYq65cXQrmBTnzZsju5WFfkpsvn3-ururr71-_rT5d17aRcq5ZY5ueYesV81aZtrHcYceZkz3v0AgPEjtPqUVlBPe8M0Y0UlBHpfetlGxJPu5zp223cb1145zMoKcUNibd62iCfvwyhl_6Nt5pBoo1ZS3J-0NAir-3Ls96E7J1w2BGF7dZlx_koCTjoqDv_kPXcZvGMp6WbcspSr7Lu9hDNsWck_PHXhD0TozeidEnMaXizcMRjvw_EwV4ewB2lac4qVFpISQW4vWeWOfi5ohwpJzSlp0SvIna3KaQ9c0PCtgCoKIUKPsLDjqnIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866421849</pqid></control><display><type>article</type><title>Cardiolipin-based respiratory complex activation in bacteria</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Arias-Cartin, Rodrigo ; Grimaldi, Stéphane ; Pommier, Janine ; Lanciano, Pascal ; Schaefer, Cédric ; Arnoux, Pascal ; Giordano, Gérard ; Guigliarelli, Bruno ; Magalon, Axel</creator><creatorcontrib>Arias-Cartin, Rodrigo ; Grimaldi, Stéphane ; Pommier, Janine ; Lanciano, Pascal ; Schaefer, Cédric ; Arnoux, Pascal ; Giordano, Gérard ; Guigliarelli, Bruno ; Magalon, Axel</creatorcontrib><description>Anionic lipids play a variety of key roles in membrane function, including functional and structural effects on respiratory complexes. However, little is known about the molecular basis of these lipid-protein interactions. In this study, NarGHI, an anaerobic respiratory complex of Escherichia coli, has been used to investigate the relations in between membrane-bound proteins with phospholipids. Activity of the NarGHI complex is enhanced by anionic phospholipids both in vivo and in vitro. The anionic cardiolipin tightly associates with the NarGHI complex and is the most effective phospholipid to restore functionality of a nearly inactive detergent-solubilized enzyme complex. A specific cardiolipin-binding site is identified on the basis of the available X-ray diffraction data and of site-directed mutagenesis experiment. One acyl chain of cardiolipin is in close proximity to the heme bD center and is responsible for structural adjustments of bD and of the adjacent quinol substrate binding site. Finally, cardiolipin binding tunes the interaction with the quinol substrate. Together, our results provide a molecular basis for the activation of a bacterial respiratory complex by cardiolipin.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1010427108</identifier><identifier>PMID: 21518899</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>bacteria ; Bacterial proteins ; Binding Sites ; Biological Sciences ; cardiolipin ; Cardiolipins ; Cardiolipins - chemistry ; Cardiolipins - metabolism ; Data processing ; E coli ; Electron Spin Resonance Spectroscopy ; Electron Transport Chain Complex Proteins - chemistry ; Electron Transport Chain Complex Proteins - genetics ; Electron Transport Chain Complex Proteins - metabolism ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Heme ; Heme - chemistry ; Hydroquinones ; Lipids ; Membrane Lipids - chemistry ; Membrane Lipids - metabolism ; Membrane proteins ; Membranes ; Models, Molecular ; Molecules ; Multienzyme Complexes - chemistry ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutant Proteins - chemistry ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Nitrate Reductase - chemistry ; Nitrate Reductase - genetics ; Nitrate Reductase - metabolism ; Nitrates ; Oxidases ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Phospholipids ; Phospholipids - chemistry ; Phospholipids - metabolism ; Protein Interaction Domains and Motifs ; proteins ; Proteolipids - metabolism ; quinol ; Site-directed mutagenesis ; Static Electricity ; Structure-function relationships ; Studies ; X-ray diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (19), p.7781-7786</ispartof><rights>Copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 10, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-35c5d316f93fc9a65c4e1b43e8d4b1a7f081bf22c19a74f4baa75872e28ff6883</citedby><cites>FETCH-LOGICAL-c588t-35c5d316f93fc9a65c4e1b43e8d4b1a7f081bf22c19a74f4baa75872e28ff6883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41242263$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41242263$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21518899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arias-Cartin, Rodrigo</creatorcontrib><creatorcontrib>Grimaldi, Stéphane</creatorcontrib><creatorcontrib>Pommier, Janine</creatorcontrib><creatorcontrib>Lanciano, Pascal</creatorcontrib><creatorcontrib>Schaefer, Cédric</creatorcontrib><creatorcontrib>Arnoux, Pascal</creatorcontrib><creatorcontrib>Giordano, Gérard</creatorcontrib><creatorcontrib>Guigliarelli, Bruno</creatorcontrib><creatorcontrib>Magalon, Axel</creatorcontrib><title>Cardiolipin-based respiratory complex activation in bacteria</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Anionic lipids play a variety of key roles in membrane function, including functional and structural effects on respiratory complexes. However, little is known about the molecular basis of these lipid-protein interactions. In this study, NarGHI, an anaerobic respiratory complex of Escherichia coli, has been used to investigate the relations in between membrane-bound proteins with phospholipids. Activity of the NarGHI complex is enhanced by anionic phospholipids both in vivo and in vitro. The anionic cardiolipin tightly associates with the NarGHI complex and is the most effective phospholipid to restore functionality of a nearly inactive detergent-solubilized enzyme complex. A specific cardiolipin-binding site is identified on the basis of the available X-ray diffraction data and of site-directed mutagenesis experiment. One acyl chain of cardiolipin is in close proximity to the heme bD center and is responsible for structural adjustments of bD and of the adjacent quinol substrate binding site. Finally, cardiolipin binding tunes the interaction with the quinol substrate. Together, our results provide a molecular basis for the activation of a bacterial respiratory complex by cardiolipin.</description><subject>bacteria</subject><subject>Bacterial proteins</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>cardiolipin</subject><subject>Cardiolipins</subject><subject>Cardiolipins - chemistry</subject><subject>Cardiolipins - metabolism</subject><subject>Data processing</subject><subject>E coli</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Electron Transport Chain Complex Proteins - chemistry</subject><subject>Electron Transport Chain Complex Proteins - genetics</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Heme</subject><subject>Heme - chemistry</subject><subject>Hydroquinones</subject><subject>Lipids</subject><subject>Membrane Lipids - chemistry</subject><subject>Membrane Lipids - metabolism</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Nitrate Reductase - chemistry</subject><subject>Nitrate Reductase - genetics</subject><subject>Nitrate Reductase - metabolism</subject><subject>Nitrates</subject><subject>Oxidases</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Phospholipids - metabolism</subject><subject>Protein Interaction Domains and Motifs</subject><subject>proteins</subject><subject>Proteolipids - metabolism</subject><subject>quinol</subject><subject>Site-directed mutagenesis</subject><subject>Static Electricity</subject><subject>Structure-function relationships</subject><subject>Studies</subject><subject>X-ray diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcFvFCEUh4mxsevq2ZM68eRl7HvADJA0Jmaj1qSJB-2ZMAxUNrPDCLON_e9ls-tu64EA4Xu_vMdHyCuEDwiCXUyjyeWEwKlAkE_IAkFh3XIFT8kCgIpacsrPyfOc1wCgGgnPyDnFBqVUakEuVyb1IQ5hCmPdmez6Krk8hWTmmO4rGzfT4P5Uxs7hzswhjlUYq65cXQrmBTnzZsju5WFfkpsvn3-ururr71-_rT5d17aRcq5ZY5ueYesV81aZtrHcYceZkz3v0AgPEjtPqUVlBPe8M0Y0UlBHpfetlGxJPu5zp223cb1145zMoKcUNibd62iCfvwyhl_6Nt5pBoo1ZS3J-0NAir-3Ls96E7J1w2BGF7dZlx_koCTjoqDv_kPXcZvGMp6WbcspSr7Lu9hDNsWck_PHXhD0TozeidEnMaXizcMRjvw_EwV4ewB2lac4qVFpISQW4vWeWOfi5ohwpJzSlp0SvIna3KaQ9c0PCtgCoKIUKPsLDjqnIg</recordid><startdate>20110510</startdate><enddate>20110510</enddate><creator>Arias-Cartin, Rodrigo</creator><creator>Grimaldi, Stéphane</creator><creator>Pommier, Janine</creator><creator>Lanciano, Pascal</creator><creator>Schaefer, Cédric</creator><creator>Arnoux, Pascal</creator><creator>Giordano, Gérard</creator><creator>Guigliarelli, Bruno</creator><creator>Magalon, Axel</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110510</creationdate><title>Cardiolipin-based respiratory complex activation in bacteria</title><author>Arias-Cartin, Rodrigo ; Grimaldi, Stéphane ; Pommier, Janine ; Lanciano, Pascal ; Schaefer, Cédric ; Arnoux, Pascal ; Giordano, Gérard ; Guigliarelli, Bruno ; Magalon, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-35c5d316f93fc9a65c4e1b43e8d4b1a7f081bf22c19a74f4baa75872e28ff6883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>bacteria</topic><topic>Bacterial proteins</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>cardiolipin</topic><topic>Cardiolipins</topic><topic>Cardiolipins - chemistry</topic><topic>Cardiolipins - metabolism</topic><topic>Data processing</topic><topic>E coli</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Electron Transport Chain Complex Proteins - chemistry</topic><topic>Electron Transport Chain Complex Proteins - genetics</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Heme</topic><topic>Heme - chemistry</topic><topic>Hydroquinones</topic><topic>Lipids</topic><topic>Membrane Lipids - chemistry</topic><topic>Membrane Lipids - metabolism</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Nitrate Reductase - chemistry</topic><topic>Nitrate Reductase - genetics</topic><topic>Nitrate Reductase - metabolism</topic><topic>Nitrates</topic><topic>Oxidases</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Phospholipids - metabolism</topic><topic>Protein Interaction Domains and Motifs</topic><topic>proteins</topic><topic>Proteolipids - metabolism</topic><topic>quinol</topic><topic>Site-directed mutagenesis</topic><topic>Static Electricity</topic><topic>Structure-function relationships</topic><topic>Studies</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias-Cartin, Rodrigo</creatorcontrib><creatorcontrib>Grimaldi, Stéphane</creatorcontrib><creatorcontrib>Pommier, Janine</creatorcontrib><creatorcontrib>Lanciano, Pascal</creatorcontrib><creatorcontrib>Schaefer, Cédric</creatorcontrib><creatorcontrib>Arnoux, Pascal</creatorcontrib><creatorcontrib>Giordano, Gérard</creatorcontrib><creatorcontrib>Guigliarelli, Bruno</creatorcontrib><creatorcontrib>Magalon, Axel</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias-Cartin, Rodrigo</au><au>Grimaldi, Stéphane</au><au>Pommier, Janine</au><au>Lanciano, Pascal</au><au>Schaefer, Cédric</au><au>Arnoux, Pascal</au><au>Giordano, Gérard</au><au>Guigliarelli, Bruno</au><au>Magalon, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiolipin-based respiratory complex activation in bacteria</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-05-10</date><risdate>2011</risdate><volume>108</volume><issue>19</issue><spage>7781</spage><epage>7786</epage><pages>7781-7786</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Anionic lipids play a variety of key roles in membrane function, including functional and structural effects on respiratory complexes. However, little is known about the molecular basis of these lipid-protein interactions. In this study, NarGHI, an anaerobic respiratory complex of Escherichia coli, has been used to investigate the relations in between membrane-bound proteins with phospholipids. Activity of the NarGHI complex is enhanced by anionic phospholipids both in vivo and in vitro. The anionic cardiolipin tightly associates with the NarGHI complex and is the most effective phospholipid to restore functionality of a nearly inactive detergent-solubilized enzyme complex. A specific cardiolipin-binding site is identified on the basis of the available X-ray diffraction data and of site-directed mutagenesis experiment. One acyl chain of cardiolipin is in close proximity to the heme bD center and is responsible for structural adjustments of bD and of the adjacent quinol substrate binding site. Finally, cardiolipin binding tunes the interaction with the quinol substrate. Together, our results provide a molecular basis for the activation of a bacterial respiratory complex by cardiolipin.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21518899</pmid><doi>10.1073/pnas.1010427108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (19), p.7781-7786
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_41242263
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects bacteria
Bacterial proteins
Binding Sites
Biological Sciences
cardiolipin
Cardiolipins
Cardiolipins - chemistry
Cardiolipins - metabolism
Data processing
E coli
Electron Spin Resonance Spectroscopy
Electron Transport Chain Complex Proteins - chemistry
Electron Transport Chain Complex Proteins - genetics
Electron Transport Chain Complex Proteins - metabolism
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Heme
Heme - chemistry
Hydroquinones
Lipids
Membrane Lipids - chemistry
Membrane Lipids - metabolism
Membrane proteins
Membranes
Models, Molecular
Molecules
Multienzyme Complexes - chemistry
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Mutagenesis
Mutagenesis, Site-Directed
Mutant Proteins - chemistry
Mutant Proteins - genetics
Mutant Proteins - metabolism
Nitrate Reductase - chemistry
Nitrate Reductase - genetics
Nitrate Reductase - metabolism
Nitrates
Oxidases
Oxidoreductases - chemistry
Oxidoreductases - metabolism
Phospholipids
Phospholipids - chemistry
Phospholipids - metabolism
Protein Interaction Domains and Motifs
proteins
Proteolipids - metabolism
quinol
Site-directed mutagenesis
Static Electricity
Structure-function relationships
Studies
X-ray diffraction
title Cardiolipin-based respiratory complex activation in bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiolipin-based%20respiratory%20complex%20activation%20in%20bacteria&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Arias-Cartin,%20Rodrigo&rft.date=2011-05-10&rft.volume=108&rft.issue=19&rft.spage=7781&rft.epage=7786&rft.pages=7781-7786&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1010427108&rft_dat=%3Cjstor_pubme%3E41242263%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866421849&rft_id=info:pmid/21518899&rft_jstor_id=41242263&rfr_iscdi=true