Cardiolipin-based respiratory complex activation in bacteria
Anionic lipids play a variety of key roles in membrane function, including functional and structural effects on respiratory complexes. However, little is known about the molecular basis of these lipid-protein interactions. In this study, NarGHI, an anaerobic respiratory complex of Escherichia coli,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-05, Vol.108 (19), p.7781-7786 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7786 |
---|---|
container_issue | 19 |
container_start_page | 7781 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Arias-Cartin, Rodrigo Grimaldi, Stéphane Pommier, Janine Lanciano, Pascal Schaefer, Cédric Arnoux, Pascal Giordano, Gérard Guigliarelli, Bruno Magalon, Axel |
description | Anionic lipids play a variety of key roles in membrane function, including functional and structural effects on respiratory complexes. However, little is known about the molecular basis of these lipid-protein interactions. In this study, NarGHI, an anaerobic respiratory complex of Escherichia coli, has been used to investigate the relations in between membrane-bound proteins with phospholipids. Activity of the NarGHI complex is enhanced by anionic phospholipids both in vivo and in vitro. The anionic cardiolipin tightly associates with the NarGHI complex and is the most effective phospholipid to restore functionality of a nearly inactive detergent-solubilized enzyme complex. A specific cardiolipin-binding site is identified on the basis of the available X-ray diffraction data and of site-directed mutagenesis experiment. One acyl chain of cardiolipin is in close proximity to the heme bD center and is responsible for structural adjustments of bD and of the adjacent quinol substrate binding site. Finally, cardiolipin binding tunes the interaction with the quinol substrate. Together, our results provide a molecular basis for the activation of a bacterial respiratory complex by cardiolipin. |
doi_str_mv | 10.1073/pnas.1010427108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_41242263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41242263</jstor_id><sourcerecordid>41242263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-35c5d316f93fc9a65c4e1b43e8d4b1a7f081bf22c19a74f4baa75872e28ff6883</originalsourceid><addsrcrecordid>eNpdkcFvFCEUh4mxsevq2ZM68eRl7HvADJA0Jmaj1qSJB-2ZMAxUNrPDCLON_e9ls-tu64EA4Xu_vMdHyCuEDwiCXUyjyeWEwKlAkE_IAkFh3XIFT8kCgIpacsrPyfOc1wCgGgnPyDnFBqVUakEuVyb1IQ5hCmPdmez6Krk8hWTmmO4rGzfT4P5Uxs7hzswhjlUYq65cXQrmBTnzZsju5WFfkpsvn3-ururr71-_rT5d17aRcq5ZY5ueYesV81aZtrHcYceZkz3v0AgPEjtPqUVlBPe8M0Y0UlBHpfetlGxJPu5zp223cb1145zMoKcUNibd62iCfvwyhl_6Nt5pBoo1ZS3J-0NAir-3Ls96E7J1w2BGF7dZlx_koCTjoqDv_kPXcZvGMp6WbcspSr7Lu9hDNsWck_PHXhD0TozeidEnMaXizcMRjvw_EwV4ewB2lac4qVFpISQW4vWeWOfi5ohwpJzSlp0SvIna3KaQ9c0PCtgCoKIUKPsLDjqnIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866421849</pqid></control><display><type>article</type><title>Cardiolipin-based respiratory complex activation in bacteria</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Arias-Cartin, Rodrigo ; Grimaldi, Stéphane ; Pommier, Janine ; Lanciano, Pascal ; Schaefer, Cédric ; Arnoux, Pascal ; Giordano, Gérard ; Guigliarelli, Bruno ; Magalon, Axel</creator><creatorcontrib>Arias-Cartin, Rodrigo ; Grimaldi, Stéphane ; Pommier, Janine ; Lanciano, Pascal ; Schaefer, Cédric ; Arnoux, Pascal ; Giordano, Gérard ; Guigliarelli, Bruno ; Magalon, Axel</creatorcontrib><description>Anionic lipids play a variety of key roles in membrane function, including functional and structural effects on respiratory complexes. However, little is known about the molecular basis of these lipid-protein interactions. In this study, NarGHI, an anaerobic respiratory complex of Escherichia coli, has been used to investigate the relations in between membrane-bound proteins with phospholipids. Activity of the NarGHI complex is enhanced by anionic phospholipids both in vivo and in vitro. The anionic cardiolipin tightly associates with the NarGHI complex and is the most effective phospholipid to restore functionality of a nearly inactive detergent-solubilized enzyme complex. A specific cardiolipin-binding site is identified on the basis of the available X-ray diffraction data and of site-directed mutagenesis experiment. One acyl chain of cardiolipin is in close proximity to the heme bD center and is responsible for structural adjustments of bD and of the adjacent quinol substrate binding site. Finally, cardiolipin binding tunes the interaction with the quinol substrate. Together, our results provide a molecular basis for the activation of a bacterial respiratory complex by cardiolipin.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1010427108</identifier><identifier>PMID: 21518899</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>bacteria ; Bacterial proteins ; Binding Sites ; Biological Sciences ; cardiolipin ; Cardiolipins ; Cardiolipins - chemistry ; Cardiolipins - metabolism ; Data processing ; E coli ; Electron Spin Resonance Spectroscopy ; Electron Transport Chain Complex Proteins - chemistry ; Electron Transport Chain Complex Proteins - genetics ; Electron Transport Chain Complex Proteins - metabolism ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Heme ; Heme - chemistry ; Hydroquinones ; Lipids ; Membrane Lipids - chemistry ; Membrane Lipids - metabolism ; Membrane proteins ; Membranes ; Models, Molecular ; Molecules ; Multienzyme Complexes - chemistry ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutant Proteins - chemistry ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Nitrate Reductase - chemistry ; Nitrate Reductase - genetics ; Nitrate Reductase - metabolism ; Nitrates ; Oxidases ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Phospholipids ; Phospholipids - chemistry ; Phospholipids - metabolism ; Protein Interaction Domains and Motifs ; proteins ; Proteolipids - metabolism ; quinol ; Site-directed mutagenesis ; Static Electricity ; Structure-function relationships ; Studies ; X-ray diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (19), p.7781-7786</ispartof><rights>Copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 10, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-35c5d316f93fc9a65c4e1b43e8d4b1a7f081bf22c19a74f4baa75872e28ff6883</citedby><cites>FETCH-LOGICAL-c588t-35c5d316f93fc9a65c4e1b43e8d4b1a7f081bf22c19a74f4baa75872e28ff6883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41242263$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41242263$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21518899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arias-Cartin, Rodrigo</creatorcontrib><creatorcontrib>Grimaldi, Stéphane</creatorcontrib><creatorcontrib>Pommier, Janine</creatorcontrib><creatorcontrib>Lanciano, Pascal</creatorcontrib><creatorcontrib>Schaefer, Cédric</creatorcontrib><creatorcontrib>Arnoux, Pascal</creatorcontrib><creatorcontrib>Giordano, Gérard</creatorcontrib><creatorcontrib>Guigliarelli, Bruno</creatorcontrib><creatorcontrib>Magalon, Axel</creatorcontrib><title>Cardiolipin-based respiratory complex activation in bacteria</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Anionic lipids play a variety of key roles in membrane function, including functional and structural effects on respiratory complexes. However, little is known about the molecular basis of these lipid-protein interactions. In this study, NarGHI, an anaerobic respiratory complex of Escherichia coli, has been used to investigate the relations in between membrane-bound proteins with phospholipids. Activity of the NarGHI complex is enhanced by anionic phospholipids both in vivo and in vitro. The anionic cardiolipin tightly associates with the NarGHI complex and is the most effective phospholipid to restore functionality of a nearly inactive detergent-solubilized enzyme complex. A specific cardiolipin-binding site is identified on the basis of the available X-ray diffraction data and of site-directed mutagenesis experiment. One acyl chain of cardiolipin is in close proximity to the heme bD center and is responsible for structural adjustments of bD and of the adjacent quinol substrate binding site. Finally, cardiolipin binding tunes the interaction with the quinol substrate. Together, our results provide a molecular basis for the activation of a bacterial respiratory complex by cardiolipin.</description><subject>bacteria</subject><subject>Bacterial proteins</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>cardiolipin</subject><subject>Cardiolipins</subject><subject>Cardiolipins - chemistry</subject><subject>Cardiolipins - metabolism</subject><subject>Data processing</subject><subject>E coli</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Electron Transport Chain Complex Proteins - chemistry</subject><subject>Electron Transport Chain Complex Proteins - genetics</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Heme</subject><subject>Heme - chemistry</subject><subject>Hydroquinones</subject><subject>Lipids</subject><subject>Membrane Lipids - chemistry</subject><subject>Membrane Lipids - metabolism</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Nitrate Reductase - chemistry</subject><subject>Nitrate Reductase - genetics</subject><subject>Nitrate Reductase - metabolism</subject><subject>Nitrates</subject><subject>Oxidases</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Phospholipids - metabolism</subject><subject>Protein Interaction Domains and Motifs</subject><subject>proteins</subject><subject>Proteolipids - metabolism</subject><subject>quinol</subject><subject>Site-directed mutagenesis</subject><subject>Static Electricity</subject><subject>Structure-function relationships</subject><subject>Studies</subject><subject>X-ray diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcFvFCEUh4mxsevq2ZM68eRl7HvADJA0Jmaj1qSJB-2ZMAxUNrPDCLON_e9ls-tu64EA4Xu_vMdHyCuEDwiCXUyjyeWEwKlAkE_IAkFh3XIFT8kCgIpacsrPyfOc1wCgGgnPyDnFBqVUakEuVyb1IQ5hCmPdmez6Krk8hWTmmO4rGzfT4P5Uxs7hzswhjlUYq65cXQrmBTnzZsju5WFfkpsvn3-ururr71-_rT5d17aRcq5ZY5ueYesV81aZtrHcYceZkz3v0AgPEjtPqUVlBPe8M0Y0UlBHpfetlGxJPu5zp223cb1145zMoKcUNibd62iCfvwyhl_6Nt5pBoo1ZS3J-0NAir-3Ls96E7J1w2BGF7dZlx_koCTjoqDv_kPXcZvGMp6WbcspSr7Lu9hDNsWck_PHXhD0TozeidEnMaXizcMRjvw_EwV4ewB2lac4qVFpISQW4vWeWOfi5ohwpJzSlp0SvIna3KaQ9c0PCtgCoKIUKPsLDjqnIg</recordid><startdate>20110510</startdate><enddate>20110510</enddate><creator>Arias-Cartin, Rodrigo</creator><creator>Grimaldi, Stéphane</creator><creator>Pommier, Janine</creator><creator>Lanciano, Pascal</creator><creator>Schaefer, Cédric</creator><creator>Arnoux, Pascal</creator><creator>Giordano, Gérard</creator><creator>Guigliarelli, Bruno</creator><creator>Magalon, Axel</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110510</creationdate><title>Cardiolipin-based respiratory complex activation in bacteria</title><author>Arias-Cartin, Rodrigo ; Grimaldi, Stéphane ; Pommier, Janine ; Lanciano, Pascal ; Schaefer, Cédric ; Arnoux, Pascal ; Giordano, Gérard ; Guigliarelli, Bruno ; Magalon, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-35c5d316f93fc9a65c4e1b43e8d4b1a7f081bf22c19a74f4baa75872e28ff6883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>bacteria</topic><topic>Bacterial proteins</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>cardiolipin</topic><topic>Cardiolipins</topic><topic>Cardiolipins - chemistry</topic><topic>Cardiolipins - metabolism</topic><topic>Data processing</topic><topic>E coli</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Electron Transport Chain Complex Proteins - chemistry</topic><topic>Electron Transport Chain Complex Proteins - genetics</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Heme</topic><topic>Heme - chemistry</topic><topic>Hydroquinones</topic><topic>Lipids</topic><topic>Membrane Lipids - chemistry</topic><topic>Membrane Lipids - metabolism</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Nitrate Reductase - chemistry</topic><topic>Nitrate Reductase - genetics</topic><topic>Nitrate Reductase - metabolism</topic><topic>Nitrates</topic><topic>Oxidases</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Phospholipids - metabolism</topic><topic>Protein Interaction Domains and Motifs</topic><topic>proteins</topic><topic>Proteolipids - metabolism</topic><topic>quinol</topic><topic>Site-directed mutagenesis</topic><topic>Static Electricity</topic><topic>Structure-function relationships</topic><topic>Studies</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias-Cartin, Rodrigo</creatorcontrib><creatorcontrib>Grimaldi, Stéphane</creatorcontrib><creatorcontrib>Pommier, Janine</creatorcontrib><creatorcontrib>Lanciano, Pascal</creatorcontrib><creatorcontrib>Schaefer, Cédric</creatorcontrib><creatorcontrib>Arnoux, Pascal</creatorcontrib><creatorcontrib>Giordano, Gérard</creatorcontrib><creatorcontrib>Guigliarelli, Bruno</creatorcontrib><creatorcontrib>Magalon, Axel</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias-Cartin, Rodrigo</au><au>Grimaldi, Stéphane</au><au>Pommier, Janine</au><au>Lanciano, Pascal</au><au>Schaefer, Cédric</au><au>Arnoux, Pascal</au><au>Giordano, Gérard</au><au>Guigliarelli, Bruno</au><au>Magalon, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiolipin-based respiratory complex activation in bacteria</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-05-10</date><risdate>2011</risdate><volume>108</volume><issue>19</issue><spage>7781</spage><epage>7786</epage><pages>7781-7786</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Anionic lipids play a variety of key roles in membrane function, including functional and structural effects on respiratory complexes. However, little is known about the molecular basis of these lipid-protein interactions. In this study, NarGHI, an anaerobic respiratory complex of Escherichia coli, has been used to investigate the relations in between membrane-bound proteins with phospholipids. Activity of the NarGHI complex is enhanced by anionic phospholipids both in vivo and in vitro. The anionic cardiolipin tightly associates with the NarGHI complex and is the most effective phospholipid to restore functionality of a nearly inactive detergent-solubilized enzyme complex. A specific cardiolipin-binding site is identified on the basis of the available X-ray diffraction data and of site-directed mutagenesis experiment. One acyl chain of cardiolipin is in close proximity to the heme bD center and is responsible for structural adjustments of bD and of the adjacent quinol substrate binding site. Finally, cardiolipin binding tunes the interaction with the quinol substrate. Together, our results provide a molecular basis for the activation of a bacterial respiratory complex by cardiolipin.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21518899</pmid><doi>10.1073/pnas.1010427108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (19), p.7781-7786 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_41242263 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | bacteria Bacterial proteins Binding Sites Biological Sciences cardiolipin Cardiolipins Cardiolipins - chemistry Cardiolipins - metabolism Data processing E coli Electron Spin Resonance Spectroscopy Electron Transport Chain Complex Proteins - chemistry Electron Transport Chain Complex Proteins - genetics Electron Transport Chain Complex Proteins - metabolism Enzymes Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Heme Heme - chemistry Hydroquinones Lipids Membrane Lipids - chemistry Membrane Lipids - metabolism Membrane proteins Membranes Models, Molecular Molecules Multienzyme Complexes - chemistry Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Mutagenesis Mutagenesis, Site-Directed Mutant Proteins - chemistry Mutant Proteins - genetics Mutant Proteins - metabolism Nitrate Reductase - chemistry Nitrate Reductase - genetics Nitrate Reductase - metabolism Nitrates Oxidases Oxidoreductases - chemistry Oxidoreductases - metabolism Phospholipids Phospholipids - chemistry Phospholipids - metabolism Protein Interaction Domains and Motifs proteins Proteolipids - metabolism quinol Site-directed mutagenesis Static Electricity Structure-function relationships Studies X-ray diffraction |
title | Cardiolipin-based respiratory complex activation in bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiolipin-based%20respiratory%20complex%20activation%20in%20bacteria&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Arias-Cartin,%20Rodrigo&rft.date=2011-05-10&rft.volume=108&rft.issue=19&rft.spage=7781&rft.epage=7786&rft.pages=7781-7786&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1010427108&rft_dat=%3Cjstor_pubme%3E41242263%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866421849&rft_id=info:pmid/21518899&rft_jstor_id=41242263&rfr_iscdi=true |