Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway

Interstrand cross-links (ICLs) block replication and transcription and thus are highly cytotoxic. In higher eukaryotes, ICLs processing involves the Fanconi anemia (FA) pathway and homologous recombination. Stalled replication forks activate the eight-subunit FA core complex, which ubiquitylates FAN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-04, Vol.108 (16), p.6492-6496
Hauptverfasser: Yamamoto, Kimiyo N, Kobayashi, Shunsuke, Tsuda, Masataka, Kurumizaka, Hitoshi, Takata, Minoru, Kono, Koichi, Jiricny, Josef, Takeda, Shunichi, Hirota, Kouji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6496
container_issue 16
container_start_page 6492
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Yamamoto, Kimiyo N
Kobayashi, Shunsuke
Tsuda, Masataka
Kurumizaka, Hitoshi
Takata, Minoru
Kono, Koichi
Jiricny, Josef
Takeda, Shunichi
Hirota, Kouji
description Interstrand cross-links (ICLs) block replication and transcription and thus are highly cytotoxic. In higher eukaryotes, ICLs processing involves the Fanconi anemia (FA) pathway and homologous recombination. Stalled replication forks activate the eight-subunit FA core complex, which ubiquitylates FANCD2-FANCI. Once it is posttranslationally modified, this heterodimer recruits downstream members of the ICL repairosome, including the FAN1 nuclease. However, ICL processing has been shown to also involve MUS81-EME1 and XPF-ERCC1, nucleases known to interact with SLX4, a docking protein that also can bind another nuclease, SLX1. To investigate the role of SLX4 more closely, we disrupted the SLX4 gene in avian DT40 cells. SLX4 deficiency caused cell death associated with extensive chromosomal aberrations, including a significant fraction of isochromatid-type breaks, with sister chromatids broken at the same site. SLX4 thus appears to play an essential role in cell proliferation, probably by promoting the resolution of interchromatid homologous recombination intermediates. Because ubiquitylation plays a key role in the FA pathway, and because the N-terminal region of SLX4 contains a ubiquitin-binding zinc finger (UBZ) domain, we asked whether this domain is required for ICL processing. We found that SLX4⁻/⁻ cells expressing UBZ-deficient SLX4 were selectively sensitive to ICL-inducing agents, and that the UBZ domain was required for interaction of SLX4 with ubiquitylated FANCD2 and for its recruitment to DNA-damage foci generated by ICL-inducing agents. Our findings thus suggest that ubiquitylated FANCD2 recruits SLX4 to DNA damage sites, where it mediates the resolution of recombination intermediates generated during the processing of ICLs.
doi_str_mv 10.1073/pnas.1018487108
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_jstor_primary_41242022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41242022</jstor_id><sourcerecordid>41242022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-29d3e0946cb022d8f5f8205726cbebff800d02c846da8e8caee94c7f95e287593</originalsourceid><addsrcrecordid>eNpVkUFvGyEQhVHVqHHTnntqi3rfZmDZ3eFSKYqaJpKlHNJIvSG8y9q4a9gCduV_Xxw7diMhMYJvHo95hHxg8JVBU16OTsdcMRTYMMBXZMJAsqIWEl6TCQBvChRcnJO3MS4BQFYIb8g5Z6IWJWcTou7cxg8bszIuUd_Th-kvQa3LK5kQU9Cuo23wMRaDdb9pMKO2gdqYq_l60Ml0dLalaWHojXatd5ZqZ1ZW01GnxV-9fUfOej1E8_6wX5DHm-8_r2-L6f2Pu-uradFWUqaCy640IEXdzoDzDvuqRw5Vw_OBmfU9AnTAWxR1p9Fgq42Rom16WRmOTSXLC_JtrzuuZyvTtfk7QQ9qDHalw1Z5bdXLG2cXau43qgQEKTELfDkIBP9nbWJSS78OLntWWJfZSYk76HIPPY0kmP74AAO1C0TtAlGnQHLHp_99HfnnBDLw-QDsOk9yqFitco48Ex_3xDImH46IYFzwPKyTQq-90vNgo3p84MBqACY5r7H8B0d_pYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863572388</pqid></control><display><type>article</type><title>Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yamamoto, Kimiyo N ; Kobayashi, Shunsuke ; Tsuda, Masataka ; Kurumizaka, Hitoshi ; Takata, Minoru ; Kono, Koichi ; Jiricny, Josef ; Takeda, Shunichi ; Hirota, Kouji</creator><creatorcontrib>Yamamoto, Kimiyo N ; Kobayashi, Shunsuke ; Tsuda, Masataka ; Kurumizaka, Hitoshi ; Takata, Minoru ; Kono, Koichi ; Jiricny, Josef ; Takeda, Shunichi ; Hirota, Kouji</creatorcontrib><description>Interstrand cross-links (ICLs) block replication and transcription and thus are highly cytotoxic. In higher eukaryotes, ICLs processing involves the Fanconi anemia (FA) pathway and homologous recombination. Stalled replication forks activate the eight-subunit FA core complex, which ubiquitylates FANCD2-FANCI. Once it is posttranslationally modified, this heterodimer recruits downstream members of the ICL repairosome, including the FAN1 nuclease. However, ICL processing has been shown to also involve MUS81-EME1 and XPF-ERCC1, nucleases known to interact with SLX4, a docking protein that also can bind another nuclease, SLX1. To investigate the role of SLX4 more closely, we disrupted the SLX4 gene in avian DT40 cells. SLX4 deficiency caused cell death associated with extensive chromosomal aberrations, including a significant fraction of isochromatid-type breaks, with sister chromatids broken at the same site. SLX4 thus appears to play an essential role in cell proliferation, probably by promoting the resolution of interchromatid homologous recombination intermediates. Because ubiquitylation plays a key role in the FA pathway, and because the N-terminal region of SLX4 contains a ubiquitin-binding zinc finger (UBZ) domain, we asked whether this domain is required for ICL processing. We found that SLX4⁻/⁻ cells expressing UBZ-deficient SLX4 were selectively sensitive to ICL-inducing agents, and that the UBZ domain was required for interaction of SLX4 with ubiquitylated FANCD2 and for its recruitment to DNA-damage foci generated by ICL-inducing agents. Our findings thus suggest that ubiquitylated FANCD2 recruits SLX4 to DNA damage sites, where it mediates the resolution of recombination intermediates generated during the processing of ICLs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1018487108</identifier><identifier>PMID: 21464321</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anemia ; Animals ; Apoptosis ; Binding sites ; Biological Sciences ; birds ; Cell cycle ; cell death ; Cell Death - drug effects ; Cell Death - genetics ; Cell growth ; Cell Line ; cell proliferation ; Cell Proliferation - drug effects ; Chickens ; chromatids ; Chromatids - genetics ; Chromatids - metabolism ; Chromosome aberrations ; Chromosome Aberrations - drug effects ; Chromosomes ; Cross-Linking Reagents - pharmacology ; crosslinking ; cytotoxicity ; DNA ; DNA damage ; DNA Damage - drug effects ; DNA Damage - physiology ; DNA repair ; DNA Repair - drug effects ; DNA Repair - physiology ; Endonucleases - genetics ; Endonucleases - metabolism ; Enzymes ; Eukaryotes ; eukaryotic cells ; Fanconi anemia ; Fanconi Anemia Complementation Group D2 Protein - genetics ; Fanconi Anemia Complementation Group D2 Protein - metabolism ; genes ; Genetic vectors ; Homologous recombination ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; nucleases ; Proteins ; Recombinases - genetics ; Recombinases - metabolism ; Recombination, Genetic - drug effects ; Recombination, Genetic - physiology ; Ubiquitination - drug effects ; Ubiquitination - physiology ; zinc finger motif ; Zinc Fingers</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-04, Vol.108 (16), p.6492-6496</ispartof><rights>Copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 19, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-29d3e0946cb022d8f5f8205726cbebff800d02c846da8e8caee94c7f95e287593</citedby><cites>FETCH-LOGICAL-c599t-29d3e0946cb022d8f5f8205726cbebff800d02c846da8e8caee94c7f95e287593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/16.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41242022$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41242022$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21464321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamamoto, Kimiyo N</creatorcontrib><creatorcontrib>Kobayashi, Shunsuke</creatorcontrib><creatorcontrib>Tsuda, Masataka</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><creatorcontrib>Takata, Minoru</creatorcontrib><creatorcontrib>Kono, Koichi</creatorcontrib><creatorcontrib>Jiricny, Josef</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>Hirota, Kouji</creatorcontrib><title>Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Interstrand cross-links (ICLs) block replication and transcription and thus are highly cytotoxic. In higher eukaryotes, ICLs processing involves the Fanconi anemia (FA) pathway and homologous recombination. Stalled replication forks activate the eight-subunit FA core complex, which ubiquitylates FANCD2-FANCI. Once it is posttranslationally modified, this heterodimer recruits downstream members of the ICL repairosome, including the FAN1 nuclease. However, ICL processing has been shown to also involve MUS81-EME1 and XPF-ERCC1, nucleases known to interact with SLX4, a docking protein that also can bind another nuclease, SLX1. To investigate the role of SLX4 more closely, we disrupted the SLX4 gene in avian DT40 cells. SLX4 deficiency caused cell death associated with extensive chromosomal aberrations, including a significant fraction of isochromatid-type breaks, with sister chromatids broken at the same site. SLX4 thus appears to play an essential role in cell proliferation, probably by promoting the resolution of interchromatid homologous recombination intermediates. Because ubiquitylation plays a key role in the FA pathway, and because the N-terminal region of SLX4 contains a ubiquitin-binding zinc finger (UBZ) domain, we asked whether this domain is required for ICL processing. We found that SLX4⁻/⁻ cells expressing UBZ-deficient SLX4 were selectively sensitive to ICL-inducing agents, and that the UBZ domain was required for interaction of SLX4 with ubiquitylated FANCD2 and for its recruitment to DNA-damage foci generated by ICL-inducing agents. Our findings thus suggest that ubiquitylated FANCD2 recruits SLX4 to DNA damage sites, where it mediates the resolution of recombination intermediates generated during the processing of ICLs.</description><subject>Anemia</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>birds</subject><subject>Cell cycle</subject><subject>cell death</subject><subject>Cell Death - drug effects</subject><subject>Cell Death - genetics</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Chickens</subject><subject>chromatids</subject><subject>Chromatids - genetics</subject><subject>Chromatids - metabolism</subject><subject>Chromosome aberrations</subject><subject>Chromosome Aberrations - drug effects</subject><subject>Chromosomes</subject><subject>Cross-Linking Reagents - pharmacology</subject><subject>crosslinking</subject><subject>cytotoxicity</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - drug effects</subject><subject>DNA Damage - physiology</subject><subject>DNA repair</subject><subject>DNA Repair - drug effects</subject><subject>DNA Repair - physiology</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Enzymes</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Fanconi anemia</subject><subject>Fanconi Anemia Complementation Group D2 Protein - genetics</subject><subject>Fanconi Anemia Complementation Group D2 Protein - metabolism</subject><subject>genes</subject><subject>Genetic vectors</subject><subject>Homologous recombination</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>nucleases</subject><subject>Proteins</subject><subject>Recombinases - genetics</subject><subject>Recombinases - metabolism</subject><subject>Recombination, Genetic - drug effects</subject><subject>Recombination, Genetic - physiology</subject><subject>Ubiquitination - drug effects</subject><subject>Ubiquitination - physiology</subject><subject>zinc finger motif</subject><subject>Zinc Fingers</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFvGyEQhVHVqHHTnntqi3rfZmDZ3eFSKYqaJpKlHNJIvSG8y9q4a9gCduV_Xxw7diMhMYJvHo95hHxg8JVBU16OTsdcMRTYMMBXZMJAsqIWEl6TCQBvChRcnJO3MS4BQFYIb8g5Z6IWJWcTou7cxg8bszIuUd_Th-kvQa3LK5kQU9Cuo23wMRaDdb9pMKO2gdqYq_l60Ml0dLalaWHojXatd5ZqZ1ZW01GnxV-9fUfOej1E8_6wX5DHm-8_r2-L6f2Pu-uradFWUqaCy640IEXdzoDzDvuqRw5Vw_OBmfU9AnTAWxR1p9Fgq42Rom16WRmOTSXLC_JtrzuuZyvTtfk7QQ9qDHalw1Z5bdXLG2cXau43qgQEKTELfDkIBP9nbWJSS78OLntWWJfZSYk76HIPPY0kmP74AAO1C0TtAlGnQHLHp_99HfnnBDLw-QDsOk9yqFitco48Ex_3xDImH46IYFzwPKyTQq-90vNgo3p84MBqACY5r7H8B0d_pYA</recordid><startdate>20110419</startdate><enddate>20110419</enddate><creator>Yamamoto, Kimiyo N</creator><creator>Kobayashi, Shunsuke</creator><creator>Tsuda, Masataka</creator><creator>Kurumizaka, Hitoshi</creator><creator>Takata, Minoru</creator><creator>Kono, Koichi</creator><creator>Jiricny, Josef</creator><creator>Takeda, Shunichi</creator><creator>Hirota, Kouji</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110419</creationdate><title>Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway</title><author>Yamamoto, Kimiyo N ; Kobayashi, Shunsuke ; Tsuda, Masataka ; Kurumizaka, Hitoshi ; Takata, Minoru ; Kono, Koichi ; Jiricny, Josef ; Takeda, Shunichi ; Hirota, Kouji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-29d3e0946cb022d8f5f8205726cbebff800d02c846da8e8caee94c7f95e287593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anemia</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>birds</topic><topic>Cell cycle</topic><topic>cell death</topic><topic>Cell Death - drug effects</topic><topic>Cell Death - genetics</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Chickens</topic><topic>chromatids</topic><topic>Chromatids - genetics</topic><topic>Chromatids - metabolism</topic><topic>Chromosome aberrations</topic><topic>Chromosome Aberrations - drug effects</topic><topic>Chromosomes</topic><topic>Cross-Linking Reagents - pharmacology</topic><topic>crosslinking</topic><topic>cytotoxicity</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - drug effects</topic><topic>DNA Damage - physiology</topic><topic>DNA repair</topic><topic>DNA Repair - drug effects</topic><topic>DNA Repair - physiology</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Enzymes</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Fanconi anemia</topic><topic>Fanconi Anemia Complementation Group D2 Protein - genetics</topic><topic>Fanconi Anemia Complementation Group D2 Protein - metabolism</topic><topic>genes</topic><topic>Genetic vectors</topic><topic>Homologous recombination</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>nucleases</topic><topic>Proteins</topic><topic>Recombinases - genetics</topic><topic>Recombinases - metabolism</topic><topic>Recombination, Genetic - drug effects</topic><topic>Recombination, Genetic - physiology</topic><topic>Ubiquitination - drug effects</topic><topic>Ubiquitination - physiology</topic><topic>zinc finger motif</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Kimiyo N</creatorcontrib><creatorcontrib>Kobayashi, Shunsuke</creatorcontrib><creatorcontrib>Tsuda, Masataka</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><creatorcontrib>Takata, Minoru</creatorcontrib><creatorcontrib>Kono, Koichi</creatorcontrib><creatorcontrib>Jiricny, Josef</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>Hirota, Kouji</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Kimiyo N</au><au>Kobayashi, Shunsuke</au><au>Tsuda, Masataka</au><au>Kurumizaka, Hitoshi</au><au>Takata, Minoru</au><au>Kono, Koichi</au><au>Jiricny, Josef</au><au>Takeda, Shunichi</au><au>Hirota, Kouji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-04-19</date><risdate>2011</risdate><volume>108</volume><issue>16</issue><spage>6492</spage><epage>6496</epage><pages>6492-6496</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Interstrand cross-links (ICLs) block replication and transcription and thus are highly cytotoxic. In higher eukaryotes, ICLs processing involves the Fanconi anemia (FA) pathway and homologous recombination. Stalled replication forks activate the eight-subunit FA core complex, which ubiquitylates FANCD2-FANCI. Once it is posttranslationally modified, this heterodimer recruits downstream members of the ICL repairosome, including the FAN1 nuclease. However, ICL processing has been shown to also involve MUS81-EME1 and XPF-ERCC1, nucleases known to interact with SLX4, a docking protein that also can bind another nuclease, SLX1. To investigate the role of SLX4 more closely, we disrupted the SLX4 gene in avian DT40 cells. SLX4 deficiency caused cell death associated with extensive chromosomal aberrations, including a significant fraction of isochromatid-type breaks, with sister chromatids broken at the same site. SLX4 thus appears to play an essential role in cell proliferation, probably by promoting the resolution of interchromatid homologous recombination intermediates. Because ubiquitylation plays a key role in the FA pathway, and because the N-terminal region of SLX4 contains a ubiquitin-binding zinc finger (UBZ) domain, we asked whether this domain is required for ICL processing. We found that SLX4⁻/⁻ cells expressing UBZ-deficient SLX4 were selectively sensitive to ICL-inducing agents, and that the UBZ domain was required for interaction of SLX4 with ubiquitylated FANCD2 and for its recruitment to DNA-damage foci generated by ICL-inducing agents. Our findings thus suggest that ubiquitylated FANCD2 recruits SLX4 to DNA damage sites, where it mediates the resolution of recombination intermediates generated during the processing of ICLs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21464321</pmid><doi>10.1073/pnas.1018487108</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-04, Vol.108 (16), p.6492-6496
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_41242022
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anemia
Animals
Apoptosis
Binding sites
Biological Sciences
birds
Cell cycle
cell death
Cell Death - drug effects
Cell Death - genetics
Cell growth
Cell Line
cell proliferation
Cell Proliferation - drug effects
Chickens
chromatids
Chromatids - genetics
Chromatids - metabolism
Chromosome aberrations
Chromosome Aberrations - drug effects
Chromosomes
Cross-Linking Reagents - pharmacology
crosslinking
cytotoxicity
DNA
DNA damage
DNA Damage - drug effects
DNA Damage - physiology
DNA repair
DNA Repair - drug effects
DNA Repair - physiology
Endonucleases - genetics
Endonucleases - metabolism
Enzymes
Eukaryotes
eukaryotic cells
Fanconi anemia
Fanconi Anemia Complementation Group D2 Protein - genetics
Fanconi Anemia Complementation Group D2 Protein - metabolism
genes
Genetic vectors
Homologous recombination
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
nucleases
Proteins
Recombinases - genetics
Recombinases - metabolism
Recombination, Genetic - drug effects
Recombination, Genetic - physiology
Ubiquitination - drug effects
Ubiquitination - physiology
zinc finger motif
Zinc Fingers
title Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20SLX4%20in%20interstrand%20cross-link%20repair%20is%20regulated%20by%20the%20Fanconi%20anemia%20pathway&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yamamoto,%20Kimiyo%20N&rft.date=2011-04-19&rft.volume=108&rft.issue=16&rft.spage=6492&rft.epage=6496&rft.pages=6492-6496&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1018487108&rft_dat=%3Cjstor_fao_a%3E41242022%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863572388&rft_id=info:pmid/21464321&rft_jstor_id=41242022&rfr_iscdi=true