Characterizations of the Beta Distributions via Some Regression Assumptions

Let X and Y be two independent non-degenerate random variables. Also let (U, V) be a bijective map of (X, Y). It is desired to use certain regression assumptions between U and V to characterize the distributions of X and V, and consequently, the distribution of (U, V). In most of the previous invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sankhya. Series. A 2008-02, Vol.70 (1), p.73-87
Hauptverfasser: Huang, Wen-Jang, Chen, Yan-Hau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue 1
container_start_page 73
container_title Sankhya. Series. A
container_volume 70
creator Huang, Wen-Jang
Chen, Yan-Hau
description Let X and Y be two independent non-degenerate random variables. Also let (U, V) be a bijective map of (X, Y). It is desired to use certain regression assumptions between U and V to characterize the distributions of X and V, and consequently, the distribution of (U, V). In most of the previous investigations, U and V turn out to be independent too. Recently, for X, Y valued in (0,1), Seshadri and Wesolowski (2003) characterize X and Y to be beta distributed based on two constancy of regression assumptions between U and V, where (U, V) is a particular bijective map of (X, Y). In this work, first we will generalize the results in Seshadri and Wesolowski (2003). It will be proved that for the bijective map given in Seshadri and Wesolowski (2003), X and Y are beta distributed under some more general regression assumptions. Next we illustrate that for some other special bijective maps (U, V), under certain regression assumptions between U and V, X and Y can also be characterized to be beta distributed, yet U and V may not be independent.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_41234402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41234402</jstor_id><sourcerecordid>41234402</sourcerecordid><originalsourceid>FETCH-jstor_primary_412344023</originalsourceid><addsrcrecordid>eNpjYuA0sDQ307UwNrdggbPNIjgYeIuLswyAwNjSyNzYiJPB2zkjsSgxuSS1KLMqsSQzP69YIT9NoSQjVcEptSRRwSWzuKQoM6kUIlOWmagQnJ-bqhCUml6UWlwMFFRwLC4uzS0Ay_MwsKYl5hSn8kJpbgZZN9cQZw_drOKS_KL4gqLM3MSiyngTQyNjExMDI2NC8gD1sDtw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterizations of the Beta Distributions via Some Regression Assumptions</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Huang, Wen-Jang ; Chen, Yan-Hau</creator><creatorcontrib>Huang, Wen-Jang ; Chen, Yan-Hau</creatorcontrib><description>Let X and Y be two independent non-degenerate random variables. Also let (U, V) be a bijective map of (X, Y). It is desired to use certain regression assumptions between U and V to characterize the distributions of X and V, and consequently, the distribution of (U, V). In most of the previous investigations, U and V turn out to be independent too. Recently, for X, Y valued in (0,1), Seshadri and Wesolowski (2003) characterize X and Y to be beta distributed based on two constancy of regression assumptions between U and V, where (U, V) is a particular bijective map of (X, Y). In this work, first we will generalize the results in Seshadri and Wesolowski (2003). It will be proved that for the bijective map given in Seshadri and Wesolowski (2003), X and Y are beta distributed under some more general regression assumptions. Next we illustrate that for some other special bijective maps (U, V), under certain regression assumptions between U and V, X and Y can also be characterized to be beta distributed, yet U and V may not be independent.</description><identifier>ISSN: 0976-836X</identifier><identifier>EISSN: 0976-8378</identifier><language>eng</language><publisher>Indian Statistical Institute</publisher><subject>Distribution functions ; Integers ; Mathematical independent variables ; Mathematical moments ; Random variables</subject><ispartof>Sankhya. Series. A, 2008-02, Vol.70 (1), p.73-87</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41234402$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41234402$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Huang, Wen-Jang</creatorcontrib><creatorcontrib>Chen, Yan-Hau</creatorcontrib><title>Characterizations of the Beta Distributions via Some Regression Assumptions</title><title>Sankhya. Series. A</title><description>Let X and Y be two independent non-degenerate random variables. Also let (U, V) be a bijective map of (X, Y). It is desired to use certain regression assumptions between U and V to characterize the distributions of X and V, and consequently, the distribution of (U, V). In most of the previous investigations, U and V turn out to be independent too. Recently, for X, Y valued in (0,1), Seshadri and Wesolowski (2003) characterize X and Y to be beta distributed based on two constancy of regression assumptions between U and V, where (U, V) is a particular bijective map of (X, Y). In this work, first we will generalize the results in Seshadri and Wesolowski (2003). It will be proved that for the bijective map given in Seshadri and Wesolowski (2003), X and Y are beta distributed under some more general regression assumptions. Next we illustrate that for some other special bijective maps (U, V), under certain regression assumptions between U and V, X and Y can also be characterized to be beta distributed, yet U and V may not be independent.</description><subject>Distribution functions</subject><subject>Integers</subject><subject>Mathematical independent variables</subject><subject>Mathematical moments</subject><subject>Random variables</subject><issn>0976-836X</issn><issn>0976-8378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0sDQ307UwNrdggbPNIjgYeIuLswyAwNjSyNzYiJPB2zkjsSgxuSS1KLMqsSQzP69YIT9NoSQjVcEptSRRwSWzuKQoM6kUIlOWmagQnJ-bqhCUml6UWlwMFFRwLC4uzS0Ay_MwsKYl5hSn8kJpbgZZN9cQZw_drOKS_KL4gqLM3MSiyngTQyNjExMDI2NC8gD1sDtw</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Huang, Wen-Jang</creator><creator>Chen, Yan-Hau</creator><general>Indian Statistical Institute</general><scope/></search><sort><creationdate>20080201</creationdate><title>Characterizations of the Beta Distributions via Some Regression Assumptions</title><author>Huang, Wen-Jang ; Chen, Yan-Hau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_412344023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Distribution functions</topic><topic>Integers</topic><topic>Mathematical independent variables</topic><topic>Mathematical moments</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wen-Jang</creatorcontrib><creatorcontrib>Chen, Yan-Hau</creatorcontrib><jtitle>Sankhya. Series. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wen-Jang</au><au>Chen, Yan-Hau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizations of the Beta Distributions via Some Regression Assumptions</atitle><jtitle>Sankhya. Series. A</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>70</volume><issue>1</issue><spage>73</spage><epage>87</epage><pages>73-87</pages><issn>0976-836X</issn><eissn>0976-8378</eissn><abstract>Let X and Y be two independent non-degenerate random variables. Also let (U, V) be a bijective map of (X, Y). It is desired to use certain regression assumptions between U and V to characterize the distributions of X and V, and consequently, the distribution of (U, V). In most of the previous investigations, U and V turn out to be independent too. Recently, for X, Y valued in (0,1), Seshadri and Wesolowski (2003) characterize X and Y to be beta distributed based on two constancy of regression assumptions between U and V, where (U, V) is a particular bijective map of (X, Y). In this work, first we will generalize the results in Seshadri and Wesolowski (2003). It will be proved that for the bijective map given in Seshadri and Wesolowski (2003), X and Y are beta distributed under some more general regression assumptions. Next we illustrate that for some other special bijective maps (U, V), under certain regression assumptions between U and V, X and Y can also be characterized to be beta distributed, yet U and V may not be independent.</abstract><pub>Indian Statistical Institute</pub></addata></record>
fulltext fulltext
identifier ISSN: 0976-836X
ispartof Sankhya. Series. A, 2008-02, Vol.70 (1), p.73-87
issn 0976-836X
0976-8378
language eng
recordid cdi_jstor_primary_41234402
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Distribution functions
Integers
Mathematical independent variables
Mathematical moments
Random variables
title Characterizations of the Beta Distributions via Some Regression Assumptions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizations%20of%20the%20Beta%20Distributions%20via%20Some%20Regression%20Assumptions&rft.jtitle=Sankhya.%20Series.%20A&rft.au=Huang,%20Wen-Jang&rft.date=2008-02-01&rft.volume=70&rft.issue=1&rft.spage=73&rft.epage=87&rft.pages=73-87&rft.issn=0976-836X&rft.eissn=0976-8378&rft_id=info:doi/&rft_dat=%3Cjstor%3E41234402%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41234402&rfr_iscdi=true