Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model
Transport measurements on the cuprates suggest the presence of a quantum critical point (QCP) hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimension...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2011-04, Vol.369 (1941), p.1670-1686 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1686 |
---|---|
container_issue | 1941 |
container_start_page | 1670 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 369 |
creator | Galanakis, D. Khatami, E. Mikelsons, K. Macridin, A. Moreno, J. Browne, D. A. Jarrell, M. |
description | Transport measurements on the cuprates suggest the presence of a quantum critical point (QCP) hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single-particle quantities, such as the spectral function, the quasi-particle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudo-gap at high filling. Both states are found to cross over to a marginal Fermi-liquid state at higher temperatures. For finite next-nearest-neighbour hopping t′, we find a classical critical point at temperature Tc. This classical critical point is found to be associated with a phase-separation transition between a compressible Mott gas and an incompressible Mott liquid corresponding to the Fermi liquid and the pseudo-gap state, respectively. Since the critical temperature Tc extrapolates to zero as t′ vanishes, we conclude that a QCP connects the Fermi liquid to the pseudo-gap region, and that the marginal Fermi-liquid behaviour in its vicinity is the analogue of the supercritical region in the liquid-gas transition. |
doi_str_mv | 10.1098/rsta.2010.0228 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_41148885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41148885</jstor_id><sourcerecordid>41148885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-c1c0d0be93f9984f8888816d12215a1846ef4ce9f82413ae181b6f44feab159d3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEoqVw5QaKuMAli8d2svaxqoBCK6GWpeJmOc6E9XYTp7aDWH49TlNWQohasuzR-_w89suy50AWQKR460PUC0pSSSgVD7JD4EsoqKzow7RnFS9Kwr4dZE9C2BACUJX0cXZAgVNKKDnMvl-Muo9jlxtvozV6a-Mu132T297YwWIf82GtA-YBB-11tK5PUh7XOE3fuWbX686afPBuQB8thty1t_rpWNfaN3licPs0e9TqbcBnd-tR9vX9u9XJaXH--cPHk-PzwpRSxMKAIQ2pUbJWSsFbMQ2oGqAUSg2CV9hyg7IVlAPTCALqquW8RV1DKRt2lL2afV2IVgVjI5q1cX2PJiooK74UJEGvZyg1fTNiiKqzweB2q3t0Y1CiFFRIkMtEvrmXnPoClkiR0MWMGu9C8NiqwdtO-50Coqas1JSVmrJSU1bpwMs777HusNnjf8JJAJsB73bpz5yxGHdq40bfp_L_ttf3nbr8sjr-wSppQXJQRDAgFV0CVb_sMFslUdkQRlS3yN_2_972Yr5tE6Lz-zdwAJ6SK5NezLoNEX_ude2vVbVky1JdCa6q1dUndnZ5pi7Yby2A3UE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221131978</pqid></control><display><type>article</type><title>Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model</title><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Galanakis, D. ; Khatami, E. ; Mikelsons, K. ; Macridin, A. ; Moreno, J. ; Browne, D. A. ; Jarrell, M.</creator><creatorcontrib>Galanakis, D. ; Khatami, E. ; Mikelsons, K. ; Macridin, A. ; Moreno, J. ; Browne, D. A. ; Jarrell, M. ; Univ. of Cincinnati, OH (United States) ; UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States) ; Northeastern Univ., Boston, MA (United States)</creatorcontrib><description>Transport measurements on the cuprates suggest the presence of a quantum critical point (QCP) hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single-particle quantities, such as the spectral function, the quasi-particle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudo-gap at high filling. Both states are found to cross over to a marginal Fermi-liquid state at higher temperatures. For finite next-nearest-neighbour hopping t′, we find a classical critical point at temperature Tc. This classical critical point is found to be associated with a phase-separation transition between a compressible Mott gas and an incompressible Mott liquid corresponding to the Fermi liquid and the pseudo-gap state, respectively. Since the critical temperature Tc extrapolates to zero as t′ vanishes, we conclude that a QCP connects the Fermi liquid to the pseudo-gap region, and that the marginal Fermi-liquid behaviour in its vicinity is the analogue of the supercritical region in the liquid-gas transition.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2010.0228</identifier><identifier>PMID: 21422020</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Cluster Methods ; Critical points ; Critical temperature ; Crossovers ; Cuprates ; Doping ; Dynamical Cluster Approximation ; Elementary excitations ; Entropy ; Low temperature ; Phase diagrams ; Quantum Criticality ; Review ; Science & Technology - Other Topics ; Superconductors</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2011-04, Vol.369 (1941), p.1670-1686</ispartof><rights>COPYRIGHT © 2011 The Royal Society</rights><rights>This journal is © 2011 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-c1c0d0be93f9984f8888816d12215a1846ef4ce9f82413ae181b6f44feab159d3</citedby><cites>FETCH-LOGICAL-c598t-c1c0d0be93f9984f8888816d12215a1846ef4ce9f82413ae181b6f44feab159d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41148885$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41148885$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,832,885,27924,27925,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21422020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1564780$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Galanakis, D.</creatorcontrib><creatorcontrib>Khatami, E.</creatorcontrib><creatorcontrib>Mikelsons, K.</creatorcontrib><creatorcontrib>Macridin, A.</creatorcontrib><creatorcontrib>Moreno, J.</creatorcontrib><creatorcontrib>Browne, D. A.</creatorcontrib><creatorcontrib>Jarrell, M.</creatorcontrib><creatorcontrib>Univ. of Cincinnati, OH (United States)</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Northeastern Univ., Boston, MA (United States)</creatorcontrib><title>Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>Transport measurements on the cuprates suggest the presence of a quantum critical point (QCP) hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single-particle quantities, such as the spectral function, the quasi-particle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudo-gap at high filling. Both states are found to cross over to a marginal Fermi-liquid state at higher temperatures. For finite next-nearest-neighbour hopping t′, we find a classical critical point at temperature Tc. This classical critical point is found to be associated with a phase-separation transition between a compressible Mott gas and an incompressible Mott liquid corresponding to the Fermi liquid and the pseudo-gap state, respectively. Since the critical temperature Tc extrapolates to zero as t′ vanishes, we conclude that a QCP connects the Fermi liquid to the pseudo-gap region, and that the marginal Fermi-liquid behaviour in its vicinity is the analogue of the supercritical region in the liquid-gas transition.</description><subject>Cluster Methods</subject><subject>Critical points</subject><subject>Critical temperature</subject><subject>Crossovers</subject><subject>Cuprates</subject><subject>Doping</subject><subject>Dynamical Cluster Approximation</subject><subject>Elementary excitations</subject><subject>Entropy</subject><subject>Low temperature</subject><subject>Phase diagrams</subject><subject>Quantum Criticality</subject><subject>Review</subject><subject>Science & Technology - Other Topics</subject><subject>Superconductors</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhSMEoqVw5QaKuMAli8d2svaxqoBCK6GWpeJmOc6E9XYTp7aDWH49TlNWQohasuzR-_w89suy50AWQKR460PUC0pSSSgVD7JD4EsoqKzow7RnFS9Kwr4dZE9C2BACUJX0cXZAgVNKKDnMvl-Muo9jlxtvozV6a-Mu132T297YwWIf82GtA-YBB-11tK5PUh7XOE3fuWbX686afPBuQB8thty1t_rpWNfaN3licPs0e9TqbcBnd-tR9vX9u9XJaXH--cPHk-PzwpRSxMKAIQ2pUbJWSsFbMQ2oGqAUSg2CV9hyg7IVlAPTCALqquW8RV1DKRt2lL2afV2IVgVjI5q1cX2PJiooK74UJEGvZyg1fTNiiKqzweB2q3t0Y1CiFFRIkMtEvrmXnPoClkiR0MWMGu9C8NiqwdtO-50Coqas1JSVmrJSU1bpwMs777HusNnjf8JJAJsB73bpz5yxGHdq40bfp_L_ttf3nbr8sjr-wSppQXJQRDAgFV0CVb_sMFslUdkQRlS3yN_2_972Yr5tE6Lz-zdwAJ6SK5NezLoNEX_ude2vVbVky1JdCa6q1dUndnZ5pi7Yby2A3UE</recordid><startdate>20110428</startdate><enddate>20110428</enddate><creator>Galanakis, D.</creator><creator>Khatami, E.</creator><creator>Mikelsons, K.</creator><creator>Macridin, A.</creator><creator>Moreno, J.</creator><creator>Browne, D. A.</creator><creator>Jarrell, M.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110428</creationdate><title>Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model</title><author>Galanakis, D. ; Khatami, E. ; Mikelsons, K. ; Macridin, A. ; Moreno, J. ; Browne, D. A. ; Jarrell, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-c1c0d0be93f9984f8888816d12215a1846ef4ce9f82413ae181b6f44feab159d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cluster Methods</topic><topic>Critical points</topic><topic>Critical temperature</topic><topic>Crossovers</topic><topic>Cuprates</topic><topic>Doping</topic><topic>Dynamical Cluster Approximation</topic><topic>Elementary excitations</topic><topic>Entropy</topic><topic>Low temperature</topic><topic>Phase diagrams</topic><topic>Quantum Criticality</topic><topic>Review</topic><topic>Science & Technology - Other Topics</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galanakis, D.</creatorcontrib><creatorcontrib>Khatami, E.</creatorcontrib><creatorcontrib>Mikelsons, K.</creatorcontrib><creatorcontrib>Macridin, A.</creatorcontrib><creatorcontrib>Moreno, J.</creatorcontrib><creatorcontrib>Browne, D. A.</creatorcontrib><creatorcontrib>Jarrell, M.</creatorcontrib><creatorcontrib>Univ. of Cincinnati, OH (United States)</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Northeastern Univ., Boston, MA (United States)</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galanakis, D.</au><au>Khatami, E.</au><au>Mikelsons, K.</au><au>Macridin, A.</au><au>Moreno, J.</au><au>Browne, D. A.</au><au>Jarrell, M.</au><aucorp>Univ. of Cincinnati, OH (United States)</aucorp><aucorp>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</aucorp><aucorp>Northeastern Univ., Boston, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2011-04-28</date><risdate>2011</risdate><volume>369</volume><issue>1941</issue><spage>1670</spage><epage>1686</epage><pages>1670-1686</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Transport measurements on the cuprates suggest the presence of a quantum critical point (QCP) hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single-particle quantities, such as the spectral function, the quasi-particle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudo-gap at high filling. Both states are found to cross over to a marginal Fermi-liquid state at higher temperatures. For finite next-nearest-neighbour hopping t′, we find a classical critical point at temperature Tc. This classical critical point is found to be associated with a phase-separation transition between a compressible Mott gas and an incompressible Mott liquid corresponding to the Fermi liquid and the pseudo-gap state, respectively. Since the critical temperature Tc extrapolates to zero as t′ vanishes, we conclude that a QCP connects the Fermi liquid to the pseudo-gap region, and that the marginal Fermi-liquid behaviour in its vicinity is the analogue of the supercritical region in the liquid-gas transition.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>21422020</pmid><doi>10.1098/rsta.2010.0228</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2011-04, Vol.369 (1941), p.1670-1686 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_jstor_primary_41148885 |
source | JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Cluster Methods Critical points Critical temperature Crossovers Cuprates Doping Dynamical Cluster Approximation Elementary excitations Entropy Low temperature Phase diagrams Quantum Criticality Review Science & Technology - Other Topics Superconductors |
title | Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20criticality%20and%20incipient%20phase%20separation%20in%20the%20thermodynamic%20properties%20of%20the%20Hubbard%20model&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Galanakis,%20D.&rft.aucorp=Univ.%20of%20Cincinnati,%20OH%20(United%20States)&rft.date=2011-04-28&rft.volume=369&rft.issue=1941&rft.spage=1670&rft.epage=1686&rft.pages=1670-1686&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2010.0228&rft_dat=%3Cjstor_proqu%3E41148885%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221131978&rft_id=info:pmid/21422020&rft_jstor_id=41148885&rfr_iscdi=true |