Finding Minimum-Cost Circulations by Successive Approximation

We develop a new approach to solving minimum-cost circulation problems. Our approach combines methods for solving the maximum flow problem with successive approximation techniques based on cost scaling. We measure the accuracy of a solution by the amount that the complementary slackness conditions a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 1990-08, Vol.15 (3), p.430-466
Hauptverfasser: Goldberg, Andrew V, Tarjan, Robert E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 3
container_start_page 430
container_title Mathematics of operations research
container_volume 15
creator Goldberg, Andrew V
Tarjan, Robert E
description We develop a new approach to solving minimum-cost circulation problems. Our approach combines methods for solving the maximum flow problem with successive approximation techniques based on cost scaling. We measure the accuracy of a solution by the amount that the complementary slackness conditions are violated. We propose a simple minimum-cost circulation algorithm, one version of which runs in O ( n 3 log( nC )) time on an n -vertex network with integer arc costs of absolute value at most C . By incorporating sophisticated data structures into the algorithm, we obtain a time bound of O ( nm log( n 2 / m )log( nC )) on a network with m arcs. A slightly different use of our approach shows that a minimum-cost circulation can be computed by solving a sequence of O ( n log( nC )) blocking flow problems. A corollary of this result is an O ( n 2 (log n )log( nC ))-time, m -processor parallel minimum-cost circulation algorithm. Our approach also yields strongly polynomial minimum-cost circulation algorithms. Our results provide evidence that the minimum-cost circulation problem is not much harder than the maximum flow problem. We believe that a suitable implementation of our method will perform extremely well in practice.
doi_str_mv 10.1287/moor.15.3.430
format Article
fullrecord <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_3689990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3689990</jstor_id><sourcerecordid>3689990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-d56ab42a2f7b02ced1eb7ad5a49f14e12a1d1d50f7d7ff8ad1b9079db91091013</originalsourceid><addsrcrecordid>eNqFkMtLAzEYxIMoWKtHbx4WEby4Nd9uHs3BQym-oOJBBW8hu0lsSne3Jrs-_ntT14o3IZDD_GbmYxA6BDyCbMzPq6bxI6CjfERyvIUGQDOWUsJhGw1wzkjKGX3eRXshLDAGyoEM0MWVq7WrX5I7V7uqq9JpE9pk6nzZLVXrmjokxWfy0JWlCcG9mWSyWvnmw1Xf4j7asWoZzMHPP0RPV5eP05t0dn99O53M0jLnok01ZaogmcosL3BWGg2m4EpTRYQFYiBToEFTbLnm1o6VhkJgLnQhAMcH-RAd97mx-7UzoZWLpvN1rJQZZIxzhmmE0h4qfROCN1aufLzTf0rAcj2QXA8kgcpcxoEif_ITqkKpltarunTh10QoI4yKiB312CK00b6RczYWQqxTznrZ1bbxVfi39LTH5-5l_u68kRtfXHT-l_wCk0GM3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212677605</pqid></control><display><type>article</type><title>Finding Minimum-Cost Circulations by Successive Approximation</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Goldberg, Andrew V ; Tarjan, Robert E</creator><creatorcontrib>Goldberg, Andrew V ; Tarjan, Robert E</creatorcontrib><description>We develop a new approach to solving minimum-cost circulation problems. Our approach combines methods for solving the maximum flow problem with successive approximation techniques based on cost scaling. We measure the accuracy of a solution by the amount that the complementary slackness conditions are violated. We propose a simple minimum-cost circulation algorithm, one version of which runs in O ( n 3 log( nC )) time on an n -vertex network with integer arc costs of absolute value at most C . By incorporating sophisticated data structures into the algorithm, we obtain a time bound of O ( nm log( n 2 / m )log( nC )) on a network with m arcs. A slightly different use of our approach shows that a minimum-cost circulation can be computed by solving a sequence of O ( n log( nC )) blocking flow problems. A corollary of this result is an O ( n 2 (log n )log( nC ))-time, m -processor parallel minimum-cost circulation algorithm. Our approach also yields strongly polynomial minimum-cost circulation algorithms. Our results provide evidence that the minimum-cost circulation problem is not much harder than the maximum flow problem. We believe that a suitable implementation of our method will perform extremely well in practice.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.15.3.430</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Algorithms ; Applied sciences ; computational complexity ; Cost functions ; Data models ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Integers ; Minimization of cost ; minimum-cost circulation ; Networks ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Plant roots ; Polynomials ; Price functions ; Problem solving ; Subroutines ; Vertices</subject><ispartof>Mathematics of operations research, 1990-08, Vol.15 (3), p.430-466</ispartof><rights>Copyright 1990 The Institute of Management Sciences/Operations Research Society of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Aug 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-d56ab42a2f7b02ced1eb7ad5a49f14e12a1d1d50f7d7ff8ad1b9079db91091013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3689990$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.15.3.430$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>315,781,785,804,833,3693,27929,27930,58022,58026,58255,58259,62621</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4564659$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldberg, Andrew V</creatorcontrib><creatorcontrib>Tarjan, Robert E</creatorcontrib><title>Finding Minimum-Cost Circulations by Successive Approximation</title><title>Mathematics of operations research</title><description>We develop a new approach to solving minimum-cost circulation problems. Our approach combines methods for solving the maximum flow problem with successive approximation techniques based on cost scaling. We measure the accuracy of a solution by the amount that the complementary slackness conditions are violated. We propose a simple minimum-cost circulation algorithm, one version of which runs in O ( n 3 log( nC )) time on an n -vertex network with integer arc costs of absolute value at most C . By incorporating sophisticated data structures into the algorithm, we obtain a time bound of O ( nm log( n 2 / m )log( nC )) on a network with m arcs. A slightly different use of our approach shows that a minimum-cost circulation can be computed by solving a sequence of O ( n log( nC )) blocking flow problems. A corollary of this result is an O ( n 2 (log n )log( nC ))-time, m -processor parallel minimum-cost circulation algorithm. Our approach also yields strongly polynomial minimum-cost circulation algorithms. Our results provide evidence that the minimum-cost circulation problem is not much harder than the maximum flow problem. We believe that a suitable implementation of our method will perform extremely well in practice.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>computational complexity</subject><subject>Cost functions</subject><subject>Data models</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Integers</subject><subject>Minimization of cost</subject><subject>minimum-cost circulation</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Plant roots</subject><subject>Polynomials</subject><subject>Price functions</subject><subject>Problem solving</subject><subject>Subroutines</subject><subject>Vertices</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLAzEYxIMoWKtHbx4WEby4Nd9uHs3BQym-oOJBBW8hu0lsSne3Jrs-_ntT14o3IZDD_GbmYxA6BDyCbMzPq6bxI6CjfERyvIUGQDOWUsJhGw1wzkjKGX3eRXshLDAGyoEM0MWVq7WrX5I7V7uqq9JpE9pk6nzZLVXrmjokxWfy0JWlCcG9mWSyWvnmw1Xf4j7asWoZzMHPP0RPV5eP05t0dn99O53M0jLnok01ZaogmcosL3BWGg2m4EpTRYQFYiBToEFTbLnm1o6VhkJgLnQhAMcH-RAd97mx-7UzoZWLpvN1rJQZZIxzhmmE0h4qfROCN1aufLzTf0rAcj2QXA8kgcpcxoEif_ITqkKpltarunTh10QoI4yKiB312CK00b6RczYWQqxTznrZ1bbxVfi39LTH5-5l_u68kRtfXHT-l_wCk0GM3w</recordid><startdate>19900801</startdate><enddate>19900801</enddate><creator>Goldberg, Andrew V</creator><creator>Tarjan, Robert E</creator><general>INFORMS</general><general>The Institute of Management Sciences and the Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>19900801</creationdate><title>Finding Minimum-Cost Circulations by Successive Approximation</title><author>Goldberg, Andrew V ; Tarjan, Robert E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-d56ab42a2f7b02ced1eb7ad5a49f14e12a1d1d50f7d7ff8ad1b9079db91091013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>computational complexity</topic><topic>Cost functions</topic><topic>Data models</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Integers</topic><topic>Minimization of cost</topic><topic>minimum-cost circulation</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Plant roots</topic><topic>Polynomials</topic><topic>Price functions</topic><topic>Problem solving</topic><topic>Subroutines</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldberg, Andrew V</creatorcontrib><creatorcontrib>Tarjan, Robert E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldberg, Andrew V</au><au>Tarjan, Robert E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding Minimum-Cost Circulations by Successive Approximation</atitle><jtitle>Mathematics of operations research</jtitle><date>1990-08-01</date><risdate>1990</risdate><volume>15</volume><issue>3</issue><spage>430</spage><epage>466</epage><pages>430-466</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>We develop a new approach to solving minimum-cost circulation problems. Our approach combines methods for solving the maximum flow problem with successive approximation techniques based on cost scaling. We measure the accuracy of a solution by the amount that the complementary slackness conditions are violated. We propose a simple minimum-cost circulation algorithm, one version of which runs in O ( n 3 log( nC )) time on an n -vertex network with integer arc costs of absolute value at most C . By incorporating sophisticated data structures into the algorithm, we obtain a time bound of O ( nm log( n 2 / m )log( nC )) on a network with m arcs. A slightly different use of our approach shows that a minimum-cost circulation can be computed by solving a sequence of O ( n log( nC )) blocking flow problems. A corollary of this result is an O ( n 2 (log n )log( nC ))-time, m -processor parallel minimum-cost circulation algorithm. Our approach also yields strongly polynomial minimum-cost circulation algorithms. Our results provide evidence that the minimum-cost circulation problem is not much harder than the maximum flow problem. We believe that a suitable implementation of our method will perform extremely well in practice.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/moor.15.3.430</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-765X
ispartof Mathematics of operations research, 1990-08, Vol.15 (3), p.430-466
issn 0364-765X
1526-5471
language eng
recordid cdi_jstor_primary_3689990
source INFORMS PubsOnLine; Business Source Complete; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algorithms
Applied sciences
computational complexity
Cost functions
Data models
Exact sciences and technology
Flows in networks. Combinatorial problems
Integers
Minimization of cost
minimum-cost circulation
Networks
Operational research and scientific management
Operational research. Management science
Operations research
Plant roots
Polynomials
Price functions
Problem solving
Subroutines
Vertices
title Finding Minimum-Cost Circulations by Successive Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20Minimum-Cost%20Circulations%20by%20Successive%20Approximation&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Goldberg,%20Andrew%20V&rft.date=1990-08-01&rft.volume=15&rft.issue=3&rft.spage=430&rft.epage=466&rft.pages=430-466&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.15.3.430&rft_dat=%3Cjstor_infor%3E3689990%3C/jstor_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212677605&rft_id=info:pmid/&rft_jstor_id=3689990&rfr_iscdi=true