Classification of Prime 3-Manifolds with Yamabe Invariant Greater than${\Bbb RP}^{3}
In this paper we compute the σ-invariants (sometimes also called the smooth Yamabe invariants) of${\Bbb RP}^{3}$and${\Bbb RP}^{2}\times S^{1}$(which are equal) and show that the only prime 3-manifolds with larger σ-invariants are S3, S2× S1, and$S^{2}\tilde{\times }S^{1}$(the nonorientable S2bundle...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics 2004-01, Vol.159 (1), p.407-424 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 424 |
---|---|
container_issue | 1 |
container_start_page | 407 |
container_title | Annals of mathematics |
container_volume | 159 |
creator | Bray, Hubert L. Neves, André |
description | In this paper we compute the σ-invariants (sometimes also called the smooth Yamabe invariants) of${\Bbb RP}^{3}$and${\Bbb RP}^{2}\times S^{1}$(which are equal) and show that the only prime 3-manifolds with larger σ-invariants are S3, S2× S1, and$S^{2}\tilde{\times }S^{1}$(the nonorientable S2bundle over S1). More generally, we show that any 3-manifold with σ-invariant greater than${\Bbb RP}^{3}$is either S3, a connect sum with an S2bundle over S1, or has more than one nonorientable prime component. A corollary is the Poincaré conjecture for 3-manifolds with σ-invariant greater than${\Bbb RP}^{3}$. Surprisingly these results follow from the same inverse mean curvature flow techniques which were used by Huisken and Ilmanen in [7] to prove the Riemannian Penrose Inequality for a black hole in a spacetime. Richard Schoen made the observation [18] that since the constant curvature metric (which is extremal for the Yamabe problem) on${\Bbb RP}^{3}$is in the same conformal class as the Schwarzschild metric (which is extremal for the Penrose inequality) on${\Bbb RP}^{3}$minus a point, there might be a connection between the two problems. The authors found a strong connection via inverse mean curvature flow. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_3597255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3597255</jstor_id><sourcerecordid>3597255</sourcerecordid><originalsourceid>FETCH-jstor_primary_35972553</originalsourceid><addsrcrecordid>eNpjYeA0MDAw1jWxMIvgYOAqLs4Ccs3Nzcw5GUKccxKLizPTMpMTSzLz8xTy0xQCijJzUxWMdX0T8zLT8nNSihXKM0syFCITcxOTUhU888oSizIT80oU3ItSE0tSixRKMhLzVKpjnJKSFIICauOqjWt5GFjTEnOKU3mhNDeDjJtriLOHblZxSX5RfAHQgsSiynhjU0tzI1NTYwLSAEmwOn0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classification of Prime 3-Manifolds with Yamabe Invariant Greater than${\Bbb RP}^{3}</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bray, Hubert L. ; Neves, André</creator><creatorcontrib>Bray, Hubert L. ; Neves, André</creatorcontrib><description>In this paper we compute the σ-invariants (sometimes also called the smooth Yamabe invariants) of${\Bbb RP}^{3}$and${\Bbb RP}^{2}\times S^{1}$(which are equal) and show that the only prime 3-manifolds with larger σ-invariants are S3, S2× S1, and$S^{2}\tilde{\times }S^{1}$(the nonorientable S2bundle over S1). More generally, we show that any 3-manifold with σ-invariant greater than${\Bbb RP}^{3}$is either S3, a connect sum with an S2bundle over S1, or has more than one nonorientable prime component. A corollary is the Poincaré conjecture for 3-manifolds with σ-invariant greater than${\Bbb RP}^{3}$. Surprisingly these results follow from the same inverse mean curvature flow techniques which were used by Huisken and Ilmanen in [7] to prove the Riemannian Penrose Inequality for a black hole in a spacetime. Richard Schoen made the observation [18] that since the constant curvature metric (which is extremal for the Yamabe problem) on${\Bbb RP}^{3}$is in the same conformal class as the Schwarzschild metric (which is extremal for the Penrose inequality) on${\Bbb RP}^{3}$minus a point, there might be a connection between the two problems. The authors found a strong connection via inverse mean curvature flow.</description><identifier>ISSN: 0003-486X</identifier><language>eng</language><publisher>Princeton University Press</publisher><subject>Connected regions ; Curvature ; Infinity ; Mathematical constants ; Mathematical manifolds ; Mathematics ; Minimal surfaces ; Riemann manifold ; Scalars ; Schwarzschild metric</subject><ispartof>Annals of mathematics, 2004-01, Vol.159 (1), p.407-424</ispartof><rights>Copyright 2004 Princeton University (Mathematics Department)</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3597255$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3597255$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>Bray, Hubert L.</creatorcontrib><creatorcontrib>Neves, André</creatorcontrib><title>Classification of Prime 3-Manifolds with Yamabe Invariant Greater than${\Bbb RP}^{3}</title><title>Annals of mathematics</title><description>In this paper we compute the σ-invariants (sometimes also called the smooth Yamabe invariants) of${\Bbb RP}^{3}$and${\Bbb RP}^{2}\times S^{1}$(which are equal) and show that the only prime 3-manifolds with larger σ-invariants are S3, S2× S1, and$S^{2}\tilde{\times }S^{1}$(the nonorientable S2bundle over S1). More generally, we show that any 3-manifold with σ-invariant greater than${\Bbb RP}^{3}$is either S3, a connect sum with an S2bundle over S1, or has more than one nonorientable prime component. A corollary is the Poincaré conjecture for 3-manifolds with σ-invariant greater than${\Bbb RP}^{3}$. Surprisingly these results follow from the same inverse mean curvature flow techniques which were used by Huisken and Ilmanen in [7] to prove the Riemannian Penrose Inequality for a black hole in a spacetime. Richard Schoen made the observation [18] that since the constant curvature metric (which is extremal for the Yamabe problem) on${\Bbb RP}^{3}$is in the same conformal class as the Schwarzschild metric (which is extremal for the Penrose inequality) on${\Bbb RP}^{3}$minus a point, there might be a connection between the two problems. The authors found a strong connection via inverse mean curvature flow.</description><subject>Connected regions</subject><subject>Curvature</subject><subject>Infinity</subject><subject>Mathematical constants</subject><subject>Mathematical manifolds</subject><subject>Mathematics</subject><subject>Minimal surfaces</subject><subject>Riemann manifold</subject><subject>Scalars</subject><subject>Schwarzschild metric</subject><issn>0003-486X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0MDAw1jWxMIvgYOAqLs4Ccs3Nzcw5GUKccxKLizPTMpMTSzLz8xTy0xQCijJzUxWMdX0T8zLT8nNSihXKM0syFCITcxOTUhU888oSizIT80oU3ItSE0tSixRKMhLzVKpjnJKSFIICauOqjWt5GFjTEnOKU3mhNDeDjJtriLOHblZxSX5RfAHQgsSiynhjU0tzI1NTYwLSAEmwOn0</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Bray, Hubert L.</creator><creator>Neves, André</creator><general>Princeton University Press</general><scope/></search><sort><creationdate>20040101</creationdate><title>Classification of Prime 3-Manifolds with Yamabe Invariant Greater than${\Bbb RP}^{3}</title><author>Bray, Hubert L. ; Neves, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_35972553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Connected regions</topic><topic>Curvature</topic><topic>Infinity</topic><topic>Mathematical constants</topic><topic>Mathematical manifolds</topic><topic>Mathematics</topic><topic>Minimal surfaces</topic><topic>Riemann manifold</topic><topic>Scalars</topic><topic>Schwarzschild metric</topic><toplevel>online_resources</toplevel><creatorcontrib>Bray, Hubert L.</creatorcontrib><creatorcontrib>Neves, André</creatorcontrib><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bray, Hubert L.</au><au>Neves, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Prime 3-Manifolds with Yamabe Invariant Greater than${\Bbb RP}^{3}</atitle><jtitle>Annals of mathematics</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>159</volume><issue>1</issue><spage>407</spage><epage>424</epage><pages>407-424</pages><issn>0003-486X</issn><abstract>In this paper we compute the σ-invariants (sometimes also called the smooth Yamabe invariants) of${\Bbb RP}^{3}$and${\Bbb RP}^{2}\times S^{1}$(which are equal) and show that the only prime 3-manifolds with larger σ-invariants are S3, S2× S1, and$S^{2}\tilde{\times }S^{1}$(the nonorientable S2bundle over S1). More generally, we show that any 3-manifold with σ-invariant greater than${\Bbb RP}^{3}$is either S3, a connect sum with an S2bundle over S1, or has more than one nonorientable prime component. A corollary is the Poincaré conjecture for 3-manifolds with σ-invariant greater than${\Bbb RP}^{3}$. Surprisingly these results follow from the same inverse mean curvature flow techniques which were used by Huisken and Ilmanen in [7] to prove the Riemannian Penrose Inequality for a black hole in a spacetime. Richard Schoen made the observation [18] that since the constant curvature metric (which is extremal for the Yamabe problem) on${\Bbb RP}^{3}$is in the same conformal class as the Schwarzschild metric (which is extremal for the Penrose inequality) on${\Bbb RP}^{3}$minus a point, there might be a connection between the two problems. The authors found a strong connection via inverse mean curvature flow.</abstract><pub>Princeton University Press</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-486X |
ispartof | Annals of mathematics, 2004-01, Vol.159 (1), p.407-424 |
issn | 0003-486X |
language | eng |
recordid | cdi_jstor_primary_3597255 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Connected regions Curvature Infinity Mathematical constants Mathematical manifolds Mathematics Minimal surfaces Riemann manifold Scalars Schwarzschild metric |
title | Classification of Prime 3-Manifolds with Yamabe Invariant Greater than${\Bbb RP}^{3} |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Prime%203-Manifolds%20with%20Yamabe%20Invariant%20Greater%20than$%7B%5CBbb%20RP%7D%5E%7B3%7D&rft.jtitle=Annals%20of%20mathematics&rft.au=Bray,%20Hubert%20L.&rft.date=2004-01-01&rft.volume=159&rft.issue=1&rft.spage=407&rft.epage=424&rft.pages=407-424&rft.issn=0003-486X&rft_id=info:doi/&rft_dat=%3Cjstor%3E3597255%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3597255&rfr_iscdi=true |