One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures
Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-07, Vol.102 (29), p.10046-10051 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10051 |
---|---|
container_issue | 29 |
container_start_page | 10046 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Lu, Wei Xiang, Jie Timko, Brian P. Wu, Yue Lieber, Charles M. |
description | Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a "0.7 structure," which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature. |
doi_str_mv | 10.1073/pnas.0504581102 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_jstor_primary_3375927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3375927</jstor_id><sourcerecordid>3375927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-35084d49e8b3bcd5082b70dd069bccf08b4976d4798b120c34136dd38f7ce84a3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS1ERZfCmQtCEQckDumOv2L7Ugm1sFupag_A2XIcB7xK7MVOoPz3eLWrLnDpaTSa3zzNvIfQKwznGARdboPJ58CBcYkxkCdogUHhumEKnqIFABG1ZISdouc5bwBAcQnP0CluABoOYoFWd8HVV350IfsYzFCt4-CqlcmVD9XKpdEEP4_Lz37wNobq1oT4yydXrd3kUsxTmu00J5dfoJPeDNm9PNQz9PXTxy-X6_rmbnV9-eGmtrxhU005SNYx5WRLW9uVjrQCug4a1Vrbg2yZEk3HhJItJmApw7TpOip7YZ1khp6hi73udm5H11kXpmQGvU1-NOm3jsbrfyfBf9ff4k-NsWCK8CLw7iCQ4o_Z5UmPPls3DCa4OGfdSOCK4x349j9wE-dULMqaQLmKFQsLtNxDtpiRk-sfLsGgdwnpXUL6mFDZePP3A0f-EEkB3h-A3eZRjmiiSgHW6H4ehsndT4WtHmEL8nqPbPIU0wNDqeCKCPoHfISumQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201364006</pqid></control><display><type>article</type><title>One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lu, Wei ; Xiang, Jie ; Timko, Brian P. ; Wu, Yue ; Lieber, Charles M.</creator><creatorcontrib>Lu, Wei ; Xiang, Jie ; Timko, Brian P. ; Wu, Yue ; Lieber, Charles M.</creatorcontrib><description>Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a "0.7 structure," which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0504581102</identifier><identifier>PMID: 16006507</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ballistics ; Data lines ; Electron transfer ; Electronic structure ; Electrons ; Low temperature ; Nanotechnology ; Nanowires ; Narrative devices ; Physical Sciences ; Physics ; Room temperature ; Transistors ; Tunnels</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-07, Vol.102 (29), p.10046-10051</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 19, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-35084d49e8b3bcd5082b70dd069bccf08b4976d4798b120c34136dd38f7ce84a3</citedby><cites>FETCH-LOGICAL-c564t-35084d49e8b3bcd5082b70dd069bccf08b4976d4798b120c34136dd38f7ce84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3375927$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3375927$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16006507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Xiang, Jie</creatorcontrib><creatorcontrib>Timko, Brian P.</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Lieber, Charles M.</creatorcontrib><title>One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a "0.7 structure," which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.</description><subject>Ballistics</subject><subject>Data lines</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Low temperature</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Narrative devices</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Transistors</subject><subject>Tunnels</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS1ERZfCmQtCEQckDumOv2L7Ugm1sFupag_A2XIcB7xK7MVOoPz3eLWrLnDpaTSa3zzNvIfQKwznGARdboPJ58CBcYkxkCdogUHhumEKnqIFABG1ZISdouc5bwBAcQnP0CluABoOYoFWd8HVV350IfsYzFCt4-CqlcmVD9XKpdEEP4_Lz37wNobq1oT4yydXrd3kUsxTmu00J5dfoJPeDNm9PNQz9PXTxy-X6_rmbnV9-eGmtrxhU005SNYx5WRLW9uVjrQCug4a1Vrbg2yZEk3HhJItJmApw7TpOip7YZ1khp6hi73udm5H11kXpmQGvU1-NOm3jsbrfyfBf9ff4k-NsWCK8CLw7iCQ4o_Z5UmPPls3DCa4OGfdSOCK4x349j9wE-dULMqaQLmKFQsLtNxDtpiRk-sfLsGgdwnpXUL6mFDZePP3A0f-EEkB3h-A3eZRjmiiSgHW6H4ehsndT4WtHmEL8nqPbPIU0wNDqeCKCPoHfISumQ</recordid><startdate>20050719</startdate><enddate>20050719</enddate><creator>Lu, Wei</creator><creator>Xiang, Jie</creator><creator>Timko, Brian P.</creator><creator>Wu, Yue</creator><creator>Lieber, Charles M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050719</creationdate><title>One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures</title><author>Lu, Wei ; Xiang, Jie ; Timko, Brian P. ; Wu, Yue ; Lieber, Charles M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-35084d49e8b3bcd5082b70dd069bccf08b4976d4798b120c34136dd38f7ce84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Ballistics</topic><topic>Data lines</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Low temperature</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Narrative devices</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Transistors</topic><topic>Tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Xiang, Jie</creatorcontrib><creatorcontrib>Timko, Brian P.</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Lieber, Charles M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Wei</au><au>Xiang, Jie</au><au>Timko, Brian P.</au><au>Wu, Yue</au><au>Lieber, Charles M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-07-19</date><risdate>2005</risdate><volume>102</volume><issue>29</issue><spage>10046</spage><epage>10051</epage><pages>10046-10051</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a "0.7 structure," which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16006507</pmid><doi>10.1073/pnas.0504581102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-07, Vol.102 (29), p.10046-10051 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_3375927 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ballistics Data lines Electron transfer Electronic structure Electrons Low temperature Nanotechnology Nanowires Narrative devices Physical Sciences Physics Room temperature Transistors Tunnels |
title | One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Dimensional%20Hole%20Gas%20in%20Germanium/Silicon%20Nanowire%20Heterostructures&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lu,%20Wei&rft.date=2005-07-19&rft.volume=102&rft.issue=29&rft.spage=10046&rft.epage=10051&rft.pages=10046-10051&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0504581102&rft_dat=%3Cjstor_pnas_%3E3375927%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201364006&rft_id=info:pmid/16006507&rft_jstor_id=3375927&rfr_iscdi=true |