One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures

Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-07, Vol.102 (29), p.10046-10051
Hauptverfasser: Lu, Wei, Xiang, Jie, Timko, Brian P., Wu, Yue, Lieber, Charles M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10051
container_issue 29
container_start_page 10046
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Lu, Wei
Xiang, Jie
Timko, Brian P.
Wu, Yue
Lieber, Charles M.
description Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a "0.7 structure," which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.
doi_str_mv 10.1073/pnas.0504581102
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_jstor_primary_3375927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3375927</jstor_id><sourcerecordid>3375927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-35084d49e8b3bcd5082b70dd069bccf08b4976d4798b120c34136dd38f7ce84a3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS1ERZfCmQtCEQckDumOv2L7Ugm1sFupag_A2XIcB7xK7MVOoPz3eLWrLnDpaTSa3zzNvIfQKwznGARdboPJ58CBcYkxkCdogUHhumEKnqIFABG1ZISdouc5bwBAcQnP0CluABoOYoFWd8HVV350IfsYzFCt4-CqlcmVD9XKpdEEP4_Lz37wNobq1oT4yydXrd3kUsxTmu00J5dfoJPeDNm9PNQz9PXTxy-X6_rmbnV9-eGmtrxhU005SNYx5WRLW9uVjrQCug4a1Vrbg2yZEk3HhJItJmApw7TpOip7YZ1khp6hi73udm5H11kXpmQGvU1-NOm3jsbrfyfBf9ff4k-NsWCK8CLw7iCQ4o_Z5UmPPls3DCa4OGfdSOCK4x349j9wE-dULMqaQLmKFQsLtNxDtpiRk-sfLsGgdwnpXUL6mFDZePP3A0f-EEkB3h-A3eZRjmiiSgHW6H4ehsndT4WtHmEL8nqPbPIU0wNDqeCKCPoHfISumQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201364006</pqid></control><display><type>article</type><title>One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lu, Wei ; Xiang, Jie ; Timko, Brian P. ; Wu, Yue ; Lieber, Charles M.</creator><creatorcontrib>Lu, Wei ; Xiang, Jie ; Timko, Brian P. ; Wu, Yue ; Lieber, Charles M.</creatorcontrib><description>Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a "0.7 structure," which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0504581102</identifier><identifier>PMID: 16006507</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ballistics ; Data lines ; Electron transfer ; Electronic structure ; Electrons ; Low temperature ; Nanotechnology ; Nanowires ; Narrative devices ; Physical Sciences ; Physics ; Room temperature ; Transistors ; Tunnels</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-07, Vol.102 (29), p.10046-10051</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 19, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-35084d49e8b3bcd5082b70dd069bccf08b4976d4798b120c34136dd38f7ce84a3</citedby><cites>FETCH-LOGICAL-c564t-35084d49e8b3bcd5082b70dd069bccf08b4976d4798b120c34136dd38f7ce84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3375927$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3375927$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16006507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Xiang, Jie</creatorcontrib><creatorcontrib>Timko, Brian P.</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Lieber, Charles M.</creatorcontrib><title>One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a "0.7 structure," which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.</description><subject>Ballistics</subject><subject>Data lines</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Low temperature</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Narrative devices</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Transistors</subject><subject>Tunnels</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS1ERZfCmQtCEQckDumOv2L7Ugm1sFupag_A2XIcB7xK7MVOoPz3eLWrLnDpaTSa3zzNvIfQKwznGARdboPJ58CBcYkxkCdogUHhumEKnqIFABG1ZISdouc5bwBAcQnP0CluABoOYoFWd8HVV350IfsYzFCt4-CqlcmVD9XKpdEEP4_Lz37wNobq1oT4yydXrd3kUsxTmu00J5dfoJPeDNm9PNQz9PXTxy-X6_rmbnV9-eGmtrxhU005SNYx5WRLW9uVjrQCug4a1Vrbg2yZEk3HhJItJmApw7TpOip7YZ1khp6hi73udm5H11kXpmQGvU1-NOm3jsbrfyfBf9ff4k-NsWCK8CLw7iCQ4o_Z5UmPPls3DCa4OGfdSOCK4x349j9wE-dULMqaQLmKFQsLtNxDtpiRk-sfLsGgdwnpXUL6mFDZePP3A0f-EEkB3h-A3eZRjmiiSgHW6H4ehsndT4WtHmEL8nqPbPIU0wNDqeCKCPoHfISumQ</recordid><startdate>20050719</startdate><enddate>20050719</enddate><creator>Lu, Wei</creator><creator>Xiang, Jie</creator><creator>Timko, Brian P.</creator><creator>Wu, Yue</creator><creator>Lieber, Charles M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050719</creationdate><title>One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures</title><author>Lu, Wei ; Xiang, Jie ; Timko, Brian P. ; Wu, Yue ; Lieber, Charles M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-35084d49e8b3bcd5082b70dd069bccf08b4976d4798b120c34136dd38f7ce84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Ballistics</topic><topic>Data lines</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Low temperature</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Narrative devices</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Transistors</topic><topic>Tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Xiang, Jie</creatorcontrib><creatorcontrib>Timko, Brian P.</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Lieber, Charles M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Wei</au><au>Xiang, Jie</au><au>Timko, Brian P.</au><au>Wu, Yue</au><au>Lieber, Charles M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-07-19</date><risdate>2005</risdate><volume>102</volume><issue>29</issue><spage>10046</spage><epage>10051</epage><pages>10046-10051</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a "0.7 structure," which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16006507</pmid><doi>10.1073/pnas.0504581102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-07, Vol.102 (29), p.10046-10051
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_3375927
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ballistics
Data lines
Electron transfer
Electronic structure
Electrons
Low temperature
Nanotechnology
Nanowires
Narrative devices
Physical Sciences
Physics
Room temperature
Transistors
Tunnels
title One-Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Dimensional%20Hole%20Gas%20in%20Germanium/Silicon%20Nanowire%20Heterostructures&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lu,%20Wei&rft.date=2005-07-19&rft.volume=102&rft.issue=29&rft.spage=10046&rft.epage=10051&rft.pages=10046-10051&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0504581102&rft_dat=%3Cjstor_pnas_%3E3375927%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201364006&rft_id=info:pmid/16006507&rft_jstor_id=3375927&rfr_iscdi=true