nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers
Terpenoids, the largest class of plant secondary metabolites, play essential roles in both plant and human life. In higher plants, the five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate, are derived from two independent pathways localized in di...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-01, Vol.102 (3), p.933-938 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 938 |
---|---|
container_issue | 3 |
container_start_page | 933 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Dudareva, N Andersson, S Orlova, I Gatto, N Reichelt, M Rhodes, D Boland, W Gerschenzon, J |
description | Terpenoids, the largest class of plant secondary metabolites, play essential roles in both plant and human life. In higher plants, the five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate, are derived from two independent pathways localized in different cellular compartments. The methylerythritol phosphate (MEP or nonmevalonate) pathway, localized in the plastids, is thought to provide IPP and dimethylallyl diphosphate for hemiterpene, monoterpene, and diterpene biosynthesis, whereas the cytosol-localized mevalonate pathway provides C5 units for sesquiterpene biosynthesis. Stable isotope-labeled, pathway-specific precursors (1-deoxy-[5,5-2H2]-D-xylulose and [2,2-2H2]-mevalolactone) were supplied to cut snapdragon flowers, which emit both monoterpenes and the sesquiterpene, nerolidol. We show that only one of the two pathways, the plastid-localized MEP pathway, is active in the formation of volatile terpenes. The MEP pathway provides IPP precursors for both plastidial monoterpene and cytosolic sesquiterpene biosynthesis in the epidermis of snapdragon petals. The trafficking of IPP occurs unidirectionally from the plastids to cytosol. The MEP pathway operates in a rhythmic manner controlled by the circadian clock, which determines the rhythmicity of terpenoid emission. |
doi_str_mv | 10.1073/pnas.0407360102 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_jstor_primary_3374351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3374351</jstor_id><sourcerecordid>3374351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-77cf7984f868ed6b6b529b64855bd0be97a5013edbdc6d7cba7e6d157f17a47c3</originalsourceid><addsrcrecordid>eNptkUtv1DAUhS0EokNhzYZHxILdtHb8ihcsUMVLqsQCurZukpuZjBI7tZ2W_nsczdApiJUf5ztX5-oQ8pLRM0Y1P58cxDMq8lVRRstHZMWoYWslDH1MVpSWel2JUpyQZzHuKKVGVvQpOWFS8fwoVwScdyPewOAdJCwmSNtbuCviPE0-pFjUPm2L0TufMEzosADXFhHj9dz_-el8GCH13hW9K6KDqQ2wya9u8LcY4nPypIMh4ovDeUquPn_6efF1ffn9y7eLj5frRlYsrbVuOm0q0VWqwlbVqpalqZWopKxbWqPRICnj2NZto1rd1KBRtUzqjmkQuuGn5MN-7jTXI7YNuhRgsFPoRwh31kNv_1Zcv7Ubf2OlkFLw7H9_8Ad_PWNMduxjg8MADv0crdJcV0KVGXz3D7jzc3B5N1vmhJIas0Dne6gJPsaA3X0QRu1SnV2qs8fqsuPNw_xH_tBVBl4fgMV5HFdabg1_uMB_ddvNw5DwV8rgqz24i8mHe5JzLbhkWX67lzvwFjahj_bqx7JZTqENF5r_BiHtwr0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201350992</pqid></control><display><type>article</type><title>nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dudareva, N ; Andersson, S ; Orlova, I ; Gatto, N ; Reichelt, M ; Rhodes, D ; Boland, W ; Gerschenzon, J</creator><creatorcontrib>Dudareva, N ; Andersson, S ; Orlova, I ; Gatto, N ; Reichelt, M ; Rhodes, D ; Boland, W ; Gerschenzon, J</creatorcontrib><description>Terpenoids, the largest class of plant secondary metabolites, play essential roles in both plant and human life. In higher plants, the five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate, are derived from two independent pathways localized in different cellular compartments. The methylerythritol phosphate (MEP or nonmevalonate) pathway, localized in the plastids, is thought to provide IPP and dimethylallyl diphosphate for hemiterpene, monoterpene, and diterpene biosynthesis, whereas the cytosol-localized mevalonate pathway provides C5 units for sesquiterpene biosynthesis. Stable isotope-labeled, pathway-specific precursors (1-deoxy-[5,5-2H2]-D-xylulose and [2,2-2H2]-mevalolactone) were supplied to cut snapdragon flowers, which emit both monoterpenes and the sesquiterpene, nerolidol. We show that only one of the two pathways, the plastid-localized MEP pathway, is active in the formation of volatile terpenes. The MEP pathway provides IPP precursors for both plastidial monoterpene and cytosolic sesquiterpene biosynthesis in the epidermis of snapdragon petals. The trafficking of IPP occurs unidirectionally from the plastids to cytosol. The MEP pathway operates in a rhythmic manner controlled by the circadian clock, which determines the rhythmicity of terpenoid emission.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0407360102</identifier><identifier>PMID: 15630092</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>1-deoxy-D-xylulose-5-phosphate reductoisomerase ; 1-deoxy-D-xylulose-5-phosphate synthase ; amino acid sequences ; Antirrhinum - metabolism ; Antirrhinum majus ; Base Sequence ; Biological Sciences ; Biology ; Biosynthesis ; Circadian Rhythm ; corolla ; Cytosol ; Cytosol - metabolism ; Diphosphates ; DXPS gene ; DXR gene ; enzymes ; Erythritol - analogs & derivatives ; Erythritol - metabolism ; Flowers ; Flowers & plants ; Flowers - cytology ; Flowers - metabolism ; genes ; Hemiterpenes - metabolism ; Mevalonic Acid - metabolism ; Molecular Sequence Data ; Monoterpenes ; Monoterpenes - metabolism ; monoterpenoids ; nucleotide sequences ; Organophosphorus Compounds - metabolism ; Plants ; Plastids ; Plastids - metabolism ; Sesquiterpenes ; Sesquiterpenes - metabolism ; sesquiterpenoids ; Sugar Phosphates - metabolism ; Terpenes ; Terpenoids</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (3), p.933-938</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 18, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-77cf7984f868ed6b6b529b64855bd0be97a5013edbdc6d7cba7e6d157f17a47c3</citedby><cites>FETCH-LOGICAL-c581t-77cf7984f868ed6b6b529b64855bd0be97a5013edbdc6d7cba7e6d157f17a47c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3374351$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3374351$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15630092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dudareva, N</creatorcontrib><creatorcontrib>Andersson, S</creatorcontrib><creatorcontrib>Orlova, I</creatorcontrib><creatorcontrib>Gatto, N</creatorcontrib><creatorcontrib>Reichelt, M</creatorcontrib><creatorcontrib>Rhodes, D</creatorcontrib><creatorcontrib>Boland, W</creatorcontrib><creatorcontrib>Gerschenzon, J</creatorcontrib><title>nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Terpenoids, the largest class of plant secondary metabolites, play essential roles in both plant and human life. In higher plants, the five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate, are derived from two independent pathways localized in different cellular compartments. The methylerythritol phosphate (MEP or nonmevalonate) pathway, localized in the plastids, is thought to provide IPP and dimethylallyl diphosphate for hemiterpene, monoterpene, and diterpene biosynthesis, whereas the cytosol-localized mevalonate pathway provides C5 units for sesquiterpene biosynthesis. Stable isotope-labeled, pathway-specific precursors (1-deoxy-[5,5-2H2]-D-xylulose and [2,2-2H2]-mevalolactone) were supplied to cut snapdragon flowers, which emit both monoterpenes and the sesquiterpene, nerolidol. We show that only one of the two pathways, the plastid-localized MEP pathway, is active in the formation of volatile terpenes. The MEP pathway provides IPP precursors for both plastidial monoterpene and cytosolic sesquiterpene biosynthesis in the epidermis of snapdragon petals. The trafficking of IPP occurs unidirectionally from the plastids to cytosol. The MEP pathway operates in a rhythmic manner controlled by the circadian clock, which determines the rhythmicity of terpenoid emission.</description><subject>1-deoxy-D-xylulose-5-phosphate reductoisomerase</subject><subject>1-deoxy-D-xylulose-5-phosphate synthase</subject><subject>amino acid sequences</subject><subject>Antirrhinum - metabolism</subject><subject>Antirrhinum majus</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Circadian Rhythm</subject><subject>corolla</subject><subject>Cytosol</subject><subject>Cytosol - metabolism</subject><subject>Diphosphates</subject><subject>DXPS gene</subject><subject>DXR gene</subject><subject>enzymes</subject><subject>Erythritol - analogs & derivatives</subject><subject>Erythritol - metabolism</subject><subject>Flowers</subject><subject>Flowers & plants</subject><subject>Flowers - cytology</subject><subject>Flowers - metabolism</subject><subject>genes</subject><subject>Hemiterpenes - metabolism</subject><subject>Mevalonic Acid - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Monoterpenes</subject><subject>Monoterpenes - metabolism</subject><subject>monoterpenoids</subject><subject>nucleotide sequences</subject><subject>Organophosphorus Compounds - metabolism</subject><subject>Plants</subject><subject>Plastids</subject><subject>Plastids - metabolism</subject><subject>Sesquiterpenes</subject><subject>Sesquiterpenes - metabolism</subject><subject>sesquiterpenoids</subject><subject>Sugar Phosphates - metabolism</subject><subject>Terpenes</subject><subject>Terpenoids</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUtv1DAUhS0EokNhzYZHxILdtHb8ihcsUMVLqsQCurZukpuZjBI7tZ2W_nsczdApiJUf5ztX5-oQ8pLRM0Y1P58cxDMq8lVRRstHZMWoYWslDH1MVpSWel2JUpyQZzHuKKVGVvQpOWFS8fwoVwScdyPewOAdJCwmSNtbuCviPE0-pFjUPm2L0TufMEzosADXFhHj9dz_-el8GCH13hW9K6KDqQ2wya9u8LcY4nPypIMh4ovDeUquPn_6efF1ffn9y7eLj5frRlYsrbVuOm0q0VWqwlbVqpalqZWopKxbWqPRICnj2NZto1rd1KBRtUzqjmkQuuGn5MN-7jTXI7YNuhRgsFPoRwh31kNv_1Zcv7Ubf2OlkFLw7H9_8Ad_PWNMduxjg8MADv0crdJcV0KVGXz3D7jzc3B5N1vmhJIas0Dne6gJPsaA3X0QRu1SnV2qs8fqsuPNw_xH_tBVBl4fgMV5HFdabg1_uMB_ddvNw5DwV8rgqz24i8mHe5JzLbhkWX67lzvwFjahj_bqx7JZTqENF5r_BiHtwr0</recordid><startdate>20050118</startdate><enddate>20050118</enddate><creator>Dudareva, N</creator><creator>Andersson, S</creator><creator>Orlova, I</creator><creator>Gatto, N</creator><creator>Reichelt, M</creator><creator>Rhodes, D</creator><creator>Boland, W</creator><creator>Gerschenzon, J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050118</creationdate><title>nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers</title><author>Dudareva, N ; Andersson, S ; Orlova, I ; Gatto, N ; Reichelt, M ; Rhodes, D ; Boland, W ; Gerschenzon, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-77cf7984f868ed6b6b529b64855bd0be97a5013edbdc6d7cba7e6d157f17a47c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>1-deoxy-D-xylulose-5-phosphate reductoisomerase</topic><topic>1-deoxy-D-xylulose-5-phosphate synthase</topic><topic>amino acid sequences</topic><topic>Antirrhinum - metabolism</topic><topic>Antirrhinum majus</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Circadian Rhythm</topic><topic>corolla</topic><topic>Cytosol</topic><topic>Cytosol - metabolism</topic><topic>Diphosphates</topic><topic>DXPS gene</topic><topic>DXR gene</topic><topic>enzymes</topic><topic>Erythritol - analogs & derivatives</topic><topic>Erythritol - metabolism</topic><topic>Flowers</topic><topic>Flowers & plants</topic><topic>Flowers - cytology</topic><topic>Flowers - metabolism</topic><topic>genes</topic><topic>Hemiterpenes - metabolism</topic><topic>Mevalonic Acid - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Monoterpenes</topic><topic>Monoterpenes - metabolism</topic><topic>monoterpenoids</topic><topic>nucleotide sequences</topic><topic>Organophosphorus Compounds - metabolism</topic><topic>Plants</topic><topic>Plastids</topic><topic>Plastids - metabolism</topic><topic>Sesquiterpenes</topic><topic>Sesquiterpenes - metabolism</topic><topic>sesquiterpenoids</topic><topic>Sugar Phosphates - metabolism</topic><topic>Terpenes</topic><topic>Terpenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudareva, N</creatorcontrib><creatorcontrib>Andersson, S</creatorcontrib><creatorcontrib>Orlova, I</creatorcontrib><creatorcontrib>Gatto, N</creatorcontrib><creatorcontrib>Reichelt, M</creatorcontrib><creatorcontrib>Rhodes, D</creatorcontrib><creatorcontrib>Boland, W</creatorcontrib><creatorcontrib>Gerschenzon, J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudareva, N</au><au>Andersson, S</au><au>Orlova, I</au><au>Gatto, N</au><au>Reichelt, M</au><au>Rhodes, D</au><au>Boland, W</au><au>Gerschenzon, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-01-18</date><risdate>2005</risdate><volume>102</volume><issue>3</issue><spage>933</spage><epage>938</epage><pages>933-938</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Terpenoids, the largest class of plant secondary metabolites, play essential roles in both plant and human life. In higher plants, the five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate, are derived from two independent pathways localized in different cellular compartments. The methylerythritol phosphate (MEP or nonmevalonate) pathway, localized in the plastids, is thought to provide IPP and dimethylallyl diphosphate for hemiterpene, monoterpene, and diterpene biosynthesis, whereas the cytosol-localized mevalonate pathway provides C5 units for sesquiterpene biosynthesis. Stable isotope-labeled, pathway-specific precursors (1-deoxy-[5,5-2H2]-D-xylulose and [2,2-2H2]-mevalolactone) were supplied to cut snapdragon flowers, which emit both monoterpenes and the sesquiterpene, nerolidol. We show that only one of the two pathways, the plastid-localized MEP pathway, is active in the formation of volatile terpenes. The MEP pathway provides IPP precursors for both plastidial monoterpene and cytosolic sesquiterpene biosynthesis in the epidermis of snapdragon petals. The trafficking of IPP occurs unidirectionally from the plastids to cytosol. The MEP pathway operates in a rhythmic manner controlled by the circadian clock, which determines the rhythmicity of terpenoid emission.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15630092</pmid><doi>10.1073/pnas.0407360102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (3), p.933-938 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_3374351 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 1-deoxy-D-xylulose-5-phosphate reductoisomerase 1-deoxy-D-xylulose-5-phosphate synthase amino acid sequences Antirrhinum - metabolism Antirrhinum majus Base Sequence Biological Sciences Biology Biosynthesis Circadian Rhythm corolla Cytosol Cytosol - metabolism Diphosphates DXPS gene DXR gene enzymes Erythritol - analogs & derivatives Erythritol - metabolism Flowers Flowers & plants Flowers - cytology Flowers - metabolism genes Hemiterpenes - metabolism Mevalonic Acid - metabolism Molecular Sequence Data Monoterpenes Monoterpenes - metabolism monoterpenoids nucleotide sequences Organophosphorus Compounds - metabolism Plants Plastids Plastids - metabolism Sesquiterpenes Sesquiterpenes - metabolism sesquiterpenoids Sugar Phosphates - metabolism Terpenes Terpenoids |
title | nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=nonmevalonate%20pathway%20supports%20both%20monoterpene%20and%20sesquiterpene%20formation%20in%20snapdragon%20flowers&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dudareva,%20N&rft.date=2005-01-18&rft.volume=102&rft.issue=3&rft.spage=933&rft.epage=938&rft.pages=933-938&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0407360102&rft_dat=%3Cjstor_fao_a%3E3374351%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201350992&rft_id=info:pmid/15630092&rft_jstor_id=3374351&rfr_iscdi=true |