nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers

Terpenoids, the largest class of plant secondary metabolites, play essential roles in both plant and human life. In higher plants, the five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate, are derived from two independent pathways localized in di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-01, Vol.102 (3), p.933-938
Hauptverfasser: Dudareva, N, Andersson, S, Orlova, I, Gatto, N, Reichelt, M, Rhodes, D, Boland, W, Gerschenzon, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 938
container_issue 3
container_start_page 933
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Dudareva, N
Andersson, S
Orlova, I
Gatto, N
Reichelt, M
Rhodes, D
Boland, W
Gerschenzon, J
description Terpenoids, the largest class of plant secondary metabolites, play essential roles in both plant and human life. In higher plants, the five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate, are derived from two independent pathways localized in different cellular compartments. The methylerythritol phosphate (MEP or nonmevalonate) pathway, localized in the plastids, is thought to provide IPP and dimethylallyl diphosphate for hemiterpene, monoterpene, and diterpene biosynthesis, whereas the cytosol-localized mevalonate pathway provides C5 units for sesquiterpene biosynthesis. Stable isotope-labeled, pathway-specific precursors (1-deoxy-[5,5-2H2]-D-xylulose and [2,2-2H2]-mevalolactone) were supplied to cut snapdragon flowers, which emit both monoterpenes and the sesquiterpene, nerolidol. We show that only one of the two pathways, the plastid-localized MEP pathway, is active in the formation of volatile terpenes. The MEP pathway provides IPP precursors for both plastidial monoterpene and cytosolic sesquiterpene biosynthesis in the epidermis of snapdragon petals. The trafficking of IPP occurs unidirectionally from the plastids to cytosol. The MEP pathway operates in a rhythmic manner controlled by the circadian clock, which determines the rhythmicity of terpenoid emission.
doi_str_mv 10.1073/pnas.0407360102
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_jstor_primary_3374351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3374351</jstor_id><sourcerecordid>3374351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-77cf7984f868ed6b6b529b64855bd0be97a5013edbdc6d7cba7e6d157f17a47c3</originalsourceid><addsrcrecordid>eNptkUtv1DAUhS0EokNhzYZHxILdtHb8ihcsUMVLqsQCurZukpuZjBI7tZ2W_nsczdApiJUf5ztX5-oQ8pLRM0Y1P58cxDMq8lVRRstHZMWoYWslDH1MVpSWel2JUpyQZzHuKKVGVvQpOWFS8fwoVwScdyPewOAdJCwmSNtbuCviPE0-pFjUPm2L0TufMEzosADXFhHj9dz_-el8GCH13hW9K6KDqQ2wya9u8LcY4nPypIMh4ovDeUquPn_6efF1ffn9y7eLj5frRlYsrbVuOm0q0VWqwlbVqpalqZWopKxbWqPRICnj2NZto1rd1KBRtUzqjmkQuuGn5MN-7jTXI7YNuhRgsFPoRwh31kNv_1Zcv7Ubf2OlkFLw7H9_8Ad_PWNMduxjg8MADv0crdJcV0KVGXz3D7jzc3B5N1vmhJIas0Dne6gJPsaA3X0QRu1SnV2qs8fqsuPNw_xH_tBVBl4fgMV5HFdabg1_uMB_ddvNw5DwV8rgqz24i8mHe5JzLbhkWX67lzvwFjahj_bqx7JZTqENF5r_BiHtwr0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201350992</pqid></control><display><type>article</type><title>nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dudareva, N ; Andersson, S ; Orlova, I ; Gatto, N ; Reichelt, M ; Rhodes, D ; Boland, W ; Gerschenzon, J</creator><creatorcontrib>Dudareva, N ; Andersson, S ; Orlova, I ; Gatto, N ; Reichelt, M ; Rhodes, D ; Boland, W ; Gerschenzon, J</creatorcontrib><description>Terpenoids, the largest class of plant secondary metabolites, play essential roles in both plant and human life. In higher plants, the five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate, are derived from two independent pathways localized in different cellular compartments. The methylerythritol phosphate (MEP or nonmevalonate) pathway, localized in the plastids, is thought to provide IPP and dimethylallyl diphosphate for hemiterpene, monoterpene, and diterpene biosynthesis, whereas the cytosol-localized mevalonate pathway provides C5 units for sesquiterpene biosynthesis. Stable isotope-labeled, pathway-specific precursors (1-deoxy-[5,5-2H2]-D-xylulose and [2,2-2H2]-mevalolactone) were supplied to cut snapdragon flowers, which emit both monoterpenes and the sesquiterpene, nerolidol. We show that only one of the two pathways, the plastid-localized MEP pathway, is active in the formation of volatile terpenes. The MEP pathway provides IPP precursors for both plastidial monoterpene and cytosolic sesquiterpene biosynthesis in the epidermis of snapdragon petals. The trafficking of IPP occurs unidirectionally from the plastids to cytosol. The MEP pathway operates in a rhythmic manner controlled by the circadian clock, which determines the rhythmicity of terpenoid emission.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0407360102</identifier><identifier>PMID: 15630092</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>1-deoxy-D-xylulose-5-phosphate reductoisomerase ; 1-deoxy-D-xylulose-5-phosphate synthase ; amino acid sequences ; Antirrhinum - metabolism ; Antirrhinum majus ; Base Sequence ; Biological Sciences ; Biology ; Biosynthesis ; Circadian Rhythm ; corolla ; Cytosol ; Cytosol - metabolism ; Diphosphates ; DXPS gene ; DXR gene ; enzymes ; Erythritol - analogs &amp; derivatives ; Erythritol - metabolism ; Flowers ; Flowers &amp; plants ; Flowers - cytology ; Flowers - metabolism ; genes ; Hemiterpenes - metabolism ; Mevalonic Acid - metabolism ; Molecular Sequence Data ; Monoterpenes ; Monoterpenes - metabolism ; monoterpenoids ; nucleotide sequences ; Organophosphorus Compounds - metabolism ; Plants ; Plastids ; Plastids - metabolism ; Sesquiterpenes ; Sesquiterpenes - metabolism ; sesquiterpenoids ; Sugar Phosphates - metabolism ; Terpenes ; Terpenoids</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (3), p.933-938</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 18, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-77cf7984f868ed6b6b529b64855bd0be97a5013edbdc6d7cba7e6d157f17a47c3</citedby><cites>FETCH-LOGICAL-c581t-77cf7984f868ed6b6b529b64855bd0be97a5013edbdc6d7cba7e6d157f17a47c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3374351$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3374351$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15630092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dudareva, N</creatorcontrib><creatorcontrib>Andersson, S</creatorcontrib><creatorcontrib>Orlova, I</creatorcontrib><creatorcontrib>Gatto, N</creatorcontrib><creatorcontrib>Reichelt, M</creatorcontrib><creatorcontrib>Rhodes, D</creatorcontrib><creatorcontrib>Boland, W</creatorcontrib><creatorcontrib>Gerschenzon, J</creatorcontrib><title>nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Terpenoids, the largest class of plant secondary metabolites, play essential roles in both plant and human life. In higher plants, the five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate, are derived from two independent pathways localized in different cellular compartments. The methylerythritol phosphate (MEP or nonmevalonate) pathway, localized in the plastids, is thought to provide IPP and dimethylallyl diphosphate for hemiterpene, monoterpene, and diterpene biosynthesis, whereas the cytosol-localized mevalonate pathway provides C5 units for sesquiterpene biosynthesis. Stable isotope-labeled, pathway-specific precursors (1-deoxy-[5,5-2H2]-D-xylulose and [2,2-2H2]-mevalolactone) were supplied to cut snapdragon flowers, which emit both monoterpenes and the sesquiterpene, nerolidol. We show that only one of the two pathways, the plastid-localized MEP pathway, is active in the formation of volatile terpenes. The MEP pathway provides IPP precursors for both plastidial monoterpene and cytosolic sesquiterpene biosynthesis in the epidermis of snapdragon petals. The trafficking of IPP occurs unidirectionally from the plastids to cytosol. The MEP pathway operates in a rhythmic manner controlled by the circadian clock, which determines the rhythmicity of terpenoid emission.</description><subject>1-deoxy-D-xylulose-5-phosphate reductoisomerase</subject><subject>1-deoxy-D-xylulose-5-phosphate synthase</subject><subject>amino acid sequences</subject><subject>Antirrhinum - metabolism</subject><subject>Antirrhinum majus</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Circadian Rhythm</subject><subject>corolla</subject><subject>Cytosol</subject><subject>Cytosol - metabolism</subject><subject>Diphosphates</subject><subject>DXPS gene</subject><subject>DXR gene</subject><subject>enzymes</subject><subject>Erythritol - analogs &amp; derivatives</subject><subject>Erythritol - metabolism</subject><subject>Flowers</subject><subject>Flowers &amp; plants</subject><subject>Flowers - cytology</subject><subject>Flowers - metabolism</subject><subject>genes</subject><subject>Hemiterpenes - metabolism</subject><subject>Mevalonic Acid - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Monoterpenes</subject><subject>Monoterpenes - metabolism</subject><subject>monoterpenoids</subject><subject>nucleotide sequences</subject><subject>Organophosphorus Compounds - metabolism</subject><subject>Plants</subject><subject>Plastids</subject><subject>Plastids - metabolism</subject><subject>Sesquiterpenes</subject><subject>Sesquiterpenes - metabolism</subject><subject>sesquiterpenoids</subject><subject>Sugar Phosphates - metabolism</subject><subject>Terpenes</subject><subject>Terpenoids</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUtv1DAUhS0EokNhzYZHxILdtHb8ihcsUMVLqsQCurZukpuZjBI7tZ2W_nsczdApiJUf5ztX5-oQ8pLRM0Y1P58cxDMq8lVRRstHZMWoYWslDH1MVpSWel2JUpyQZzHuKKVGVvQpOWFS8fwoVwScdyPewOAdJCwmSNtbuCviPE0-pFjUPm2L0TufMEzosADXFhHj9dz_-el8GCH13hW9K6KDqQ2wya9u8LcY4nPypIMh4ovDeUquPn_6efF1ffn9y7eLj5frRlYsrbVuOm0q0VWqwlbVqpalqZWopKxbWqPRICnj2NZto1rd1KBRtUzqjmkQuuGn5MN-7jTXI7YNuhRgsFPoRwh31kNv_1Zcv7Ubf2OlkFLw7H9_8Ad_PWNMduxjg8MADv0crdJcV0KVGXz3D7jzc3B5N1vmhJIas0Dne6gJPsaA3X0QRu1SnV2qs8fqsuPNw_xH_tBVBl4fgMV5HFdabg1_uMB_ddvNw5DwV8rgqz24i8mHe5JzLbhkWX67lzvwFjahj_bqx7JZTqENF5r_BiHtwr0</recordid><startdate>20050118</startdate><enddate>20050118</enddate><creator>Dudareva, N</creator><creator>Andersson, S</creator><creator>Orlova, I</creator><creator>Gatto, N</creator><creator>Reichelt, M</creator><creator>Rhodes, D</creator><creator>Boland, W</creator><creator>Gerschenzon, J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050118</creationdate><title>nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers</title><author>Dudareva, N ; Andersson, S ; Orlova, I ; Gatto, N ; Reichelt, M ; Rhodes, D ; Boland, W ; Gerschenzon, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-77cf7984f868ed6b6b529b64855bd0be97a5013edbdc6d7cba7e6d157f17a47c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>1-deoxy-D-xylulose-5-phosphate reductoisomerase</topic><topic>1-deoxy-D-xylulose-5-phosphate synthase</topic><topic>amino acid sequences</topic><topic>Antirrhinum - metabolism</topic><topic>Antirrhinum majus</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Circadian Rhythm</topic><topic>corolla</topic><topic>Cytosol</topic><topic>Cytosol - metabolism</topic><topic>Diphosphates</topic><topic>DXPS gene</topic><topic>DXR gene</topic><topic>enzymes</topic><topic>Erythritol - analogs &amp; derivatives</topic><topic>Erythritol - metabolism</topic><topic>Flowers</topic><topic>Flowers &amp; plants</topic><topic>Flowers - cytology</topic><topic>Flowers - metabolism</topic><topic>genes</topic><topic>Hemiterpenes - metabolism</topic><topic>Mevalonic Acid - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Monoterpenes</topic><topic>Monoterpenes - metabolism</topic><topic>monoterpenoids</topic><topic>nucleotide sequences</topic><topic>Organophosphorus Compounds - metabolism</topic><topic>Plants</topic><topic>Plastids</topic><topic>Plastids - metabolism</topic><topic>Sesquiterpenes</topic><topic>Sesquiterpenes - metabolism</topic><topic>sesquiterpenoids</topic><topic>Sugar Phosphates - metabolism</topic><topic>Terpenes</topic><topic>Terpenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudareva, N</creatorcontrib><creatorcontrib>Andersson, S</creatorcontrib><creatorcontrib>Orlova, I</creatorcontrib><creatorcontrib>Gatto, N</creatorcontrib><creatorcontrib>Reichelt, M</creatorcontrib><creatorcontrib>Rhodes, D</creatorcontrib><creatorcontrib>Boland, W</creatorcontrib><creatorcontrib>Gerschenzon, J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudareva, N</au><au>Andersson, S</au><au>Orlova, I</au><au>Gatto, N</au><au>Reichelt, M</au><au>Rhodes, D</au><au>Boland, W</au><au>Gerschenzon, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-01-18</date><risdate>2005</risdate><volume>102</volume><issue>3</issue><spage>933</spage><epage>938</epage><pages>933-938</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Terpenoids, the largest class of plant secondary metabolites, play essential roles in both plant and human life. In higher plants, the five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate, are derived from two independent pathways localized in different cellular compartments. The methylerythritol phosphate (MEP or nonmevalonate) pathway, localized in the plastids, is thought to provide IPP and dimethylallyl diphosphate for hemiterpene, monoterpene, and diterpene biosynthesis, whereas the cytosol-localized mevalonate pathway provides C5 units for sesquiterpene biosynthesis. Stable isotope-labeled, pathway-specific precursors (1-deoxy-[5,5-2H2]-D-xylulose and [2,2-2H2]-mevalolactone) were supplied to cut snapdragon flowers, which emit both monoterpenes and the sesquiterpene, nerolidol. We show that only one of the two pathways, the plastid-localized MEP pathway, is active in the formation of volatile terpenes. The MEP pathway provides IPP precursors for both plastidial monoterpene and cytosolic sesquiterpene biosynthesis in the epidermis of snapdragon petals. The trafficking of IPP occurs unidirectionally from the plastids to cytosol. The MEP pathway operates in a rhythmic manner controlled by the circadian clock, which determines the rhythmicity of terpenoid emission.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15630092</pmid><doi>10.1073/pnas.0407360102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (3), p.933-938
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_3374351
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 1-deoxy-D-xylulose-5-phosphate reductoisomerase
1-deoxy-D-xylulose-5-phosphate synthase
amino acid sequences
Antirrhinum - metabolism
Antirrhinum majus
Base Sequence
Biological Sciences
Biology
Biosynthesis
Circadian Rhythm
corolla
Cytosol
Cytosol - metabolism
Diphosphates
DXPS gene
DXR gene
enzymes
Erythritol - analogs & derivatives
Erythritol - metabolism
Flowers
Flowers & plants
Flowers - cytology
Flowers - metabolism
genes
Hemiterpenes - metabolism
Mevalonic Acid - metabolism
Molecular Sequence Data
Monoterpenes
Monoterpenes - metabolism
monoterpenoids
nucleotide sequences
Organophosphorus Compounds - metabolism
Plants
Plastids
Plastids - metabolism
Sesquiterpenes
Sesquiterpenes - metabolism
sesquiterpenoids
Sugar Phosphates - metabolism
Terpenes
Terpenoids
title nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=nonmevalonate%20pathway%20supports%20both%20monoterpene%20and%20sesquiterpene%20formation%20in%20snapdragon%20flowers&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dudareva,%20N&rft.date=2005-01-18&rft.volume=102&rft.issue=3&rft.spage=933&rft.epage=938&rft.pages=933-938&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0407360102&rft_dat=%3Cjstor_fao_a%3E3374351%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201350992&rft_id=info:pmid/15630092&rft_jstor_id=3374351&rfr_iscdi=true