Damped Elastic Recoil of the Titin Spring in Myofibrils of Human Myocardium

The giant protein titin functions as a molecular spring in muscle and is responsible for most of the passive tension of myocardium. Because the titin spring is extended during diastolic stretch, it will recoil elastically during systole and potentially may influence the overall shortening behavior o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-10, Vol.100 (22), p.12688-12693
Hauptverfasser: Opitz, Christiane A., Kulke, Michael, Leake, Mark C., Neagoe, Ciprian, Hinssen, Horst, Hajjar, Roger J., Linke, Wolfgang A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12693
container_issue 22
container_start_page 12688
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Opitz, Christiane A.
Kulke, Michael
Leake, Mark C.
Neagoe, Ciprian
Hinssen, Horst
Hajjar, Roger J.
Linke, Wolfgang A.
description The giant protein titin functions as a molecular spring in muscle and is responsible for most of the passive tension of myocardium. Because the titin spring is extended during diastolic stretch, it will recoil elastically during systole and potentially may influence the overall shortening behavior of cardiac muscle. Here, titin elastic recoil was quantified in single human heart myofibrils by using a high-speed charge-coupled device-line camera and a nanonewton-range force sensor. Application of a slack-test protocol revealed that the passive shortening velocity (Vp) of nonactivated cardiomyofibrils depends on: (i) initial sarcomere length, (ii) release-step amplitude, and (iii) temperature. Selective digestion of titin, with low doses of trypsin, decelerated myofibrillar passive recoil and eventually stopped it. Selective extraction of actin filaments with a Ca2+-independent gelsolin fragment greatly reduced the dependency of Vpon release-step size and temperature. These results are explained by the presence of viscous forces opposing myofibrillar passive recoil that are caused mainly by weak actin-titin interactions. Thus, Vpis determined by two distinct factors: titin elastic recoil and internal viscous drag forces. The recoil could be modeled as that of a damped entropic spring consisting of independent worm-like chains. The functional importance of myofibrillar elastic recoil was addressed by comparing instantaneous Vpto unloaded shortening velocity, which was measured in demembranated, fully Ca2+-activated, human cardiac fibers. Titin-driven passive recoil was much faster than active unloaded shortening velocity in early phases of isotonic contraction. Damped myofibrillar elastic recoil could help accelerate active contraction speed of human myocardium during early systolic shortening.
doi_str_mv 10.1073/pnas.2133733100
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_3148021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148021</jstor_id><sourcerecordid>3148021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-4e73415d7fb26db35432ee83f67a55ba22326dd12469d4f26e982a0f0030c90f3</originalsourceid><addsrcrecordid>eNqF0UFvFCEUB3BiNHatnr0YM_Fg4mHax4NhhoMHU6s11phoPRNmBlo2zLACY-y3l3U3XfXiCfL4vZc_eYQ8pXBCoWWnm1mnE6SMtYxRgHtkRUHSWnAJ98kKANu648iPyKOU1gAgmw4ekiPKG8Ek4op8fKunjRmrc69TdkP1xQzB-SrYKt-Y6splN1dfN9HN11W5fboN1vXR-bQVF8ukf9cGHUe3TI_JA6t9Mk_25zH59u786uyivvz8_sPZm8t6aATNNTct47QZW9ujGHvWcIbGdMyKVjdNrxFZqY8UuZAjtyiM7FCDBWAwSLDsmLzezd0s_WTGwcw5aq9KyknHWxW0U3-_zO5GXYcfCjmIVpb-l_v-GL4vJmU1uTQY7_VswpJUSxmVIKHAF__AdVjiXP6mECh2KCUr6HSHhhhSisbeBaGgtktS2yWpw5JKx_M_8x_8fisFVHuw7TyMA4WoKIquK-TVf4iyi_fZ_MzFPtvZdcoh3mFGeQcl1i-5ja6K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201282993</pqid></control><display><type>article</type><title>Damped Elastic Recoil of the Titin Spring in Myofibrils of Human Myocardium</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Opitz, Christiane A. ; Kulke, Michael ; Leake, Mark C. ; Neagoe, Ciprian ; Hinssen, Horst ; Hajjar, Roger J. ; Linke, Wolfgang A.</creator><creatorcontrib>Opitz, Christiane A. ; Kulke, Michael ; Leake, Mark C. ; Neagoe, Ciprian ; Hinssen, Horst ; Hajjar, Roger J. ; Linke, Wolfgang A.</creatorcontrib><description>The giant protein titin functions as a molecular spring in muscle and is responsible for most of the passive tension of myocardium. Because the titin spring is extended during diastolic stretch, it will recoil elastically during systole and potentially may influence the overall shortening behavior of cardiac muscle. Here, titin elastic recoil was quantified in single human heart myofibrils by using a high-speed charge-coupled device-line camera and a nanonewton-range force sensor. Application of a slack-test protocol revealed that the passive shortening velocity (Vp) of nonactivated cardiomyofibrils depends on: (i) initial sarcomere length, (ii) release-step amplitude, and (iii) temperature. Selective digestion of titin, with low doses of trypsin, decelerated myofibrillar passive recoil and eventually stopped it. Selective extraction of actin filaments with a Ca2+-independent gelsolin fragment greatly reduced the dependency of Vpon release-step size and temperature. These results are explained by the presence of viscous forces opposing myofibrillar passive recoil that are caused mainly by weak actin-titin interactions. Thus, Vpis determined by two distinct factors: titin elastic recoil and internal viscous drag forces. The recoil could be modeled as that of a damped entropic spring consisting of independent worm-like chains. The functional importance of myofibrillar elastic recoil was addressed by comparing instantaneous Vpto unloaded shortening velocity, which was measured in demembranated, fully Ca2+-activated, human cardiac fibers. Titin-driven passive recoil was much faster than active unloaded shortening velocity in early phases of isotonic contraction. Damped myofibrillar elastic recoil could help accelerate active contraction speed of human myocardium during early systolic shortening.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2133733100</identifier><identifier>PMID: 14563922</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins ; Actins - chemistry ; Actins - physiology ; Biological Sciences ; Biophysics ; Calmodulin-Binding Proteins - chemistry ; Connectin ; Elasticity ; Heart ; Heart - physiology ; Humans ; Mechanical properties ; Microfilaments ; Muscle Proteins - chemistry ; Muscle Proteins - physiology ; Myocardium ; Myofibrils ; Myofibrils - chemistry ; Myofibrils - physiology ; Myofibrils - ultrastructure ; Myosins - chemistry ; Myosins - physiology ; Protein folding ; Protein isoforms ; Protein Kinases - chemistry ; Protein Kinases - physiology ; Proteins ; Reuptake ; Sarcomeres ; Sarcomeres - physiology ; Sarcomeres - ultrastructure ; Thermodynamics ; Velocity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-10, Vol.100 (22), p.12688-12693</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 28, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-4e73415d7fb26db35432ee83f67a55ba22326dd12469d4f26e982a0f0030c90f3</citedby><cites>FETCH-LOGICAL-c561t-4e73415d7fb26db35432ee83f67a55ba22326dd12469d4f26e982a0f0030c90f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148021$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148021$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14563922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Opitz, Christiane A.</creatorcontrib><creatorcontrib>Kulke, Michael</creatorcontrib><creatorcontrib>Leake, Mark C.</creatorcontrib><creatorcontrib>Neagoe, Ciprian</creatorcontrib><creatorcontrib>Hinssen, Horst</creatorcontrib><creatorcontrib>Hajjar, Roger J.</creatorcontrib><creatorcontrib>Linke, Wolfgang A.</creatorcontrib><title>Damped Elastic Recoil of the Titin Spring in Myofibrils of Human Myocardium</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The giant protein titin functions as a molecular spring in muscle and is responsible for most of the passive tension of myocardium. Because the titin spring is extended during diastolic stretch, it will recoil elastically during systole and potentially may influence the overall shortening behavior of cardiac muscle. Here, titin elastic recoil was quantified in single human heart myofibrils by using a high-speed charge-coupled device-line camera and a nanonewton-range force sensor. Application of a slack-test protocol revealed that the passive shortening velocity (Vp) of nonactivated cardiomyofibrils depends on: (i) initial sarcomere length, (ii) release-step amplitude, and (iii) temperature. Selective digestion of titin, with low doses of trypsin, decelerated myofibrillar passive recoil and eventually stopped it. Selective extraction of actin filaments with a Ca2+-independent gelsolin fragment greatly reduced the dependency of Vpon release-step size and temperature. These results are explained by the presence of viscous forces opposing myofibrillar passive recoil that are caused mainly by weak actin-titin interactions. Thus, Vpis determined by two distinct factors: titin elastic recoil and internal viscous drag forces. The recoil could be modeled as that of a damped entropic spring consisting of independent worm-like chains. The functional importance of myofibrillar elastic recoil was addressed by comparing instantaneous Vpto unloaded shortening velocity, which was measured in demembranated, fully Ca2+-activated, human cardiac fibers. Titin-driven passive recoil was much faster than active unloaded shortening velocity in early phases of isotonic contraction. Damped myofibrillar elastic recoil could help accelerate active contraction speed of human myocardium during early systolic shortening.</description><subject>Actins</subject><subject>Actins - chemistry</subject><subject>Actins - physiology</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Calmodulin-Binding Proteins - chemistry</subject><subject>Connectin</subject><subject>Elasticity</subject><subject>Heart</subject><subject>Heart - physiology</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Microfilaments</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscle Proteins - physiology</subject><subject>Myocardium</subject><subject>Myofibrils</subject><subject>Myofibrils - chemistry</subject><subject>Myofibrils - physiology</subject><subject>Myofibrils - ultrastructure</subject><subject>Myosins - chemistry</subject><subject>Myosins - physiology</subject><subject>Protein folding</subject><subject>Protein isoforms</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - physiology</subject><subject>Proteins</subject><subject>Reuptake</subject><subject>Sarcomeres</subject><subject>Sarcomeres - physiology</subject><subject>Sarcomeres - ultrastructure</subject><subject>Thermodynamics</subject><subject>Velocity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFvFCEUB3BiNHatnr0YM_Fg4mHax4NhhoMHU6s11phoPRNmBlo2zLACY-y3l3U3XfXiCfL4vZc_eYQ8pXBCoWWnm1mnE6SMtYxRgHtkRUHSWnAJ98kKANu648iPyKOU1gAgmw4ekiPKG8Ek4op8fKunjRmrc69TdkP1xQzB-SrYKt-Y6splN1dfN9HN11W5fboN1vXR-bQVF8ukf9cGHUe3TI_JA6t9Mk_25zH59u786uyivvz8_sPZm8t6aATNNTct47QZW9ujGHvWcIbGdMyKVjdNrxFZqY8UuZAjtyiM7FCDBWAwSLDsmLzezd0s_WTGwcw5aq9KyknHWxW0U3-_zO5GXYcfCjmIVpb-l_v-GL4vJmU1uTQY7_VswpJUSxmVIKHAF__AdVjiXP6mECh2KCUr6HSHhhhSisbeBaGgtktS2yWpw5JKx_M_8x_8fisFVHuw7TyMA4WoKIquK-TVf4iyi_fZ_MzFPtvZdcoh3mFGeQcl1i-5ja6K</recordid><startdate>20031028</startdate><enddate>20031028</enddate><creator>Opitz, Christiane A.</creator><creator>Kulke, Michael</creator><creator>Leake, Mark C.</creator><creator>Neagoe, Ciprian</creator><creator>Hinssen, Horst</creator><creator>Hajjar, Roger J.</creator><creator>Linke, Wolfgang A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031028</creationdate><title>Damped Elastic Recoil of the Titin Spring in Myofibrils of Human Myocardium</title><author>Opitz, Christiane A. ; Kulke, Michael ; Leake, Mark C. ; Neagoe, Ciprian ; Hinssen, Horst ; Hajjar, Roger J. ; Linke, Wolfgang A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-4e73415d7fb26db35432ee83f67a55ba22326dd12469d4f26e982a0f0030c90f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Actins</topic><topic>Actins - chemistry</topic><topic>Actins - physiology</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Calmodulin-Binding Proteins - chemistry</topic><topic>Connectin</topic><topic>Elasticity</topic><topic>Heart</topic><topic>Heart - physiology</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Microfilaments</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscle Proteins - physiology</topic><topic>Myocardium</topic><topic>Myofibrils</topic><topic>Myofibrils - chemistry</topic><topic>Myofibrils - physiology</topic><topic>Myofibrils - ultrastructure</topic><topic>Myosins - chemistry</topic><topic>Myosins - physiology</topic><topic>Protein folding</topic><topic>Protein isoforms</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - physiology</topic><topic>Proteins</topic><topic>Reuptake</topic><topic>Sarcomeres</topic><topic>Sarcomeres - physiology</topic><topic>Sarcomeres - ultrastructure</topic><topic>Thermodynamics</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opitz, Christiane A.</creatorcontrib><creatorcontrib>Kulke, Michael</creatorcontrib><creatorcontrib>Leake, Mark C.</creatorcontrib><creatorcontrib>Neagoe, Ciprian</creatorcontrib><creatorcontrib>Hinssen, Horst</creatorcontrib><creatorcontrib>Hajjar, Roger J.</creatorcontrib><creatorcontrib>Linke, Wolfgang A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opitz, Christiane A.</au><au>Kulke, Michael</au><au>Leake, Mark C.</au><au>Neagoe, Ciprian</au><au>Hinssen, Horst</au><au>Hajjar, Roger J.</au><au>Linke, Wolfgang A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damped Elastic Recoil of the Titin Spring in Myofibrils of Human Myocardium</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-10-28</date><risdate>2003</risdate><volume>100</volume><issue>22</issue><spage>12688</spage><epage>12693</epage><pages>12688-12693</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The giant protein titin functions as a molecular spring in muscle and is responsible for most of the passive tension of myocardium. Because the titin spring is extended during diastolic stretch, it will recoil elastically during systole and potentially may influence the overall shortening behavior of cardiac muscle. Here, titin elastic recoil was quantified in single human heart myofibrils by using a high-speed charge-coupled device-line camera and a nanonewton-range force sensor. Application of a slack-test protocol revealed that the passive shortening velocity (Vp) of nonactivated cardiomyofibrils depends on: (i) initial sarcomere length, (ii) release-step amplitude, and (iii) temperature. Selective digestion of titin, with low doses of trypsin, decelerated myofibrillar passive recoil and eventually stopped it. Selective extraction of actin filaments with a Ca2+-independent gelsolin fragment greatly reduced the dependency of Vpon release-step size and temperature. These results are explained by the presence of viscous forces opposing myofibrillar passive recoil that are caused mainly by weak actin-titin interactions. Thus, Vpis determined by two distinct factors: titin elastic recoil and internal viscous drag forces. The recoil could be modeled as that of a damped entropic spring consisting of independent worm-like chains. The functional importance of myofibrillar elastic recoil was addressed by comparing instantaneous Vpto unloaded shortening velocity, which was measured in demembranated, fully Ca2+-activated, human cardiac fibers. Titin-driven passive recoil was much faster than active unloaded shortening velocity in early phases of isotonic contraction. Damped myofibrillar elastic recoil could help accelerate active contraction speed of human myocardium during early systolic shortening.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14563922</pmid><doi>10.1073/pnas.2133733100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-10, Vol.100 (22), p.12688-12693
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_3148021
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actins
Actins - chemistry
Actins - physiology
Biological Sciences
Biophysics
Calmodulin-Binding Proteins - chemistry
Connectin
Elasticity
Heart
Heart - physiology
Humans
Mechanical properties
Microfilaments
Muscle Proteins - chemistry
Muscle Proteins - physiology
Myocardium
Myofibrils
Myofibrils - chemistry
Myofibrils - physiology
Myofibrils - ultrastructure
Myosins - chemistry
Myosins - physiology
Protein folding
Protein isoforms
Protein Kinases - chemistry
Protein Kinases - physiology
Proteins
Reuptake
Sarcomeres
Sarcomeres - physiology
Sarcomeres - ultrastructure
Thermodynamics
Velocity
title Damped Elastic Recoil of the Titin Spring in Myofibrils of Human Myocardium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damped%20Elastic%20Recoil%20of%20the%20Titin%20Spring%20in%20Myofibrils%20of%20Human%20Myocardium&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Opitz,%20Christiane%20A.&rft.date=2003-10-28&rft.volume=100&rft.issue=22&rft.spage=12688&rft.epage=12693&rft.pages=12688-12693&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2133733100&rft_dat=%3Cjstor_cross%3E3148021%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201282993&rft_id=info:pmid/14563922&rft_jstor_id=3148021&rfr_iscdi=true