Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts

Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-06, Vol.100 (13), p.7996-8001
Hauptverfasser: Stump, Craig S., Short, Kevin R., Bigelow, Maureen L., Schimke, Jill M., Nair, K. Sreekumaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8001
container_issue 13
container_start_page 7996
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Stump, Craig S.
Short, Kevin R.
Bigelow, Maureen L.
Schimke, Jill M.
Nair, K. Sreekumaran
description Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels.
doi_str_mv 10.1073/pnas.1332551100
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_3139860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3139860</jstor_id><sourcerecordid>3139860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-bd261bea38b14da4ea3457ecc2ef0072b035d22e50530af4db2b3768c6d6ebb13</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEokvhzAWBxQFxaNrxR-zkwGFVFVqphYouZ8txHDZLYgfbQfS_x9GuugUJOHlk_97zjP2y7DmGYwyCnoxWhWNMKSkKjAEeZAsMFc45q-BhtgAgIi8ZYQfZkxA2AFAVJTzODjApocSUL7LxrG2Njsi16MKGqe8schadT4Oy6Oab6U1UPbqagu4Nuuqi02tnG9-lzeXqGl1710w6ds4ezXU0SX5za-PahC4cIWUbNHz-uEQrr2zQvhtjeJo9alUfzLPdeph9eX-2Oj3PLz99uDhdXuaaExrzuiEc10bRssasUSxVrBBGa2JaAEFqoEVDiCmgoKBa1tSkpoKXmjfc1DWmh9m7re841YNptLHRq16OvhuUv5VOdfL3E9ut5Vf3Q2LOBMz6Nzu9d98nE6IcuqBN3ytr3BSkoAyXwCCBb_8J4lIUJWMkfdf_PLHgAld49nz9B7hxk7fpvSRJvaVb-dzhyRbS3oXgTXs3HAY5p0PO6ZD7dCTFy_tvsud3cUjAqx0wK_d2yY9KUVX83rR_IWQ79X00P2NCX2zRTYjO37EU06rkQH8B_GfX7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201340361</pqid></control><display><type>article</type><title>Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts</title><source>JSTOR Archive Collection A-Z Listing</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Stump, Craig S. ; Short, Kevin R. ; Bigelow, Maureen L. ; Schimke, Jill M. ; Nair, K. Sreekumaran</creator><creatorcontrib>Stump, Craig S. ; Short, Kevin R. ; Bigelow, Maureen L. ; Schimke, Jill M. ; Nair, K. Sreekumaran</creatorcontrib><description>Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P &lt; 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P &lt; 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P &lt; 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P &lt; 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1332551100</identifier><identifier>PMID: 12808136</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine Triphosphate - metabolism ; Adult ; Amino acids ; Biological Sciences ; Cell Nucleus - metabolism ; Citrate (si)-Synthase - metabolism ; Citrates ; Diabetes ; Diabetes Mellitus, Type 2 - metabolism ; DNA, Complementary - metabolism ; Dose-Response Relationship, Drug ; Effects ; Electron Transport Complex IV - metabolism ; Enzymes ; Female ; Glucose Tolerance Test ; Humans ; Insulin ; Insulin - pharmacology ; Male ; Messenger RNA ; Mitochondria - metabolism ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscles ; Muscular system ; Oxygen - metabolism ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Quadriceps muscle ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonucleic acid ; RNA ; RNA - metabolism ; RNA, Messenger - metabolism ; Skeletal muscle ; Substrate Specificity ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-06, Vol.100 (13), p.7996-8001</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 24, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-bd261bea38b14da4ea3457ecc2ef0072b035d22e50530af4db2b3768c6d6ebb13</citedby><cites>FETCH-LOGICAL-c623t-bd261bea38b14da4ea3457ecc2ef0072b035d22e50530af4db2b3768c6d6ebb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3139860$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3139860$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27933,27934,53800,53802,58026,58259</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12808136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stump, Craig S.</creatorcontrib><creatorcontrib>Short, Kevin R.</creatorcontrib><creatorcontrib>Bigelow, Maureen L.</creatorcontrib><creatorcontrib>Schimke, Jill M.</creatorcontrib><creatorcontrib>Nair, K. Sreekumaran</creatorcontrib><title>Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P &lt; 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P &lt; 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P &lt; 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P &lt; 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Adult</subject><subject>Amino acids</subject><subject>Biological Sciences</subject><subject>Cell Nucleus - metabolism</subject><subject>Citrate (si)-Synthase - metabolism</subject><subject>Citrates</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>DNA, Complementary - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Effects</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Enzymes</subject><subject>Female</subject><subject>Glucose Tolerance Test</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - pharmacology</subject><subject>Male</subject><subject>Messenger RNA</subject><subject>Mitochondria - metabolism</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscles</subject><subject>Muscular system</subject><subject>Oxygen - metabolism</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Quadriceps muscle</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Skeletal muscle</subject><subject>Substrate Specificity</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1v1DAQxSMEokvhzAWBxQFxaNrxR-zkwGFVFVqphYouZ8txHDZLYgfbQfS_x9GuugUJOHlk_97zjP2y7DmGYwyCnoxWhWNMKSkKjAEeZAsMFc45q-BhtgAgIi8ZYQfZkxA2AFAVJTzODjApocSUL7LxrG2Njsi16MKGqe8schadT4Oy6Oab6U1UPbqagu4Nuuqi02tnG9-lzeXqGl1710w6ds4ezXU0SX5za-PahC4cIWUbNHz-uEQrr2zQvhtjeJo9alUfzLPdeph9eX-2Oj3PLz99uDhdXuaaExrzuiEc10bRssasUSxVrBBGa2JaAEFqoEVDiCmgoKBa1tSkpoKXmjfc1DWmh9m7re841YNptLHRq16OvhuUv5VOdfL3E9ut5Vf3Q2LOBMz6Nzu9d98nE6IcuqBN3ytr3BSkoAyXwCCBb_8J4lIUJWMkfdf_PLHgAld49nz9B7hxk7fpvSRJvaVb-dzhyRbS3oXgTXs3HAY5p0PO6ZD7dCTFy_tvsud3cUjAqx0wK_d2yY9KUVX83rR_IWQ79X00P2NCX2zRTYjO37EU06rkQH8B_GfX7w</recordid><startdate>20030624</startdate><enddate>20030624</enddate><creator>Stump, Craig S.</creator><creator>Short, Kevin R.</creator><creator>Bigelow, Maureen L.</creator><creator>Schimke, Jill M.</creator><creator>Nair, K. Sreekumaran</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030624</creationdate><title>Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts</title><author>Stump, Craig S. ; Short, Kevin R. ; Bigelow, Maureen L. ; Schimke, Jill M. ; Nair, K. Sreekumaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-bd261bea38b14da4ea3457ecc2ef0072b035d22e50530af4db2b3768c6d6ebb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Adult</topic><topic>Amino acids</topic><topic>Biological Sciences</topic><topic>Cell Nucleus - metabolism</topic><topic>Citrate (si)-Synthase - metabolism</topic><topic>Citrates</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>DNA, Complementary - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Effects</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Enzymes</topic><topic>Female</topic><topic>Glucose Tolerance Test</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - pharmacology</topic><topic>Male</topic><topic>Messenger RNA</topic><topic>Mitochondria - metabolism</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscles</topic><topic>Muscular system</topic><topic>Oxygen - metabolism</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Quadriceps muscle</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Skeletal muscle</topic><topic>Substrate Specificity</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stump, Craig S.</creatorcontrib><creatorcontrib>Short, Kevin R.</creatorcontrib><creatorcontrib>Bigelow, Maureen L.</creatorcontrib><creatorcontrib>Schimke, Jill M.</creatorcontrib><creatorcontrib>Nair, K. Sreekumaran</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stump, Craig S.</au><au>Short, Kevin R.</au><au>Bigelow, Maureen L.</au><au>Schimke, Jill M.</au><au>Nair, K. Sreekumaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-06-24</date><risdate>2003</risdate><volume>100</volume><issue>13</issue><spage>7996</spage><epage>8001</epage><pages>7996-8001</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P &lt; 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P &lt; 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P &lt; 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P &lt; 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12808136</pmid><doi>10.1073/pnas.1332551100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-06, Vol.100 (13), p.7996-8001
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_3139860
source JSTOR Archive Collection A-Z Listing; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphate - metabolism
Adult
Amino acids
Biological Sciences
Cell Nucleus - metabolism
Citrate (si)-Synthase - metabolism
Citrates
Diabetes
Diabetes Mellitus, Type 2 - metabolism
DNA, Complementary - metabolism
Dose-Response Relationship, Drug
Effects
Electron Transport Complex IV - metabolism
Enzymes
Female
Glucose Tolerance Test
Humans
Insulin
Insulin - pharmacology
Male
Messenger RNA
Mitochondria - metabolism
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Muscles
Muscular system
Oxygen - metabolism
Protein Biosynthesis
Protein synthesis
Proteins
Quadriceps muscle
Reverse Transcriptase Polymerase Chain Reaction
Ribonucleic acid
RNA
RNA - metabolism
RNA, Messenger - metabolism
Skeletal muscle
Substrate Specificity
Time Factors
title Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T01%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Insulin%20on%20Human%20Skeletal%20Muscle%20Mitochondrial%20ATP%20Production,%20Protein%20Synthesis,%20and%20mRNA%20Transcripts&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stump,%20Craig%20S.&rft.date=2003-06-24&rft.volume=100&rft.issue=13&rft.spage=7996&rft.epage=8001&rft.pages=7996-8001&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1332551100&rft_dat=%3Cjstor_proqu%3E3139860%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201340361&rft_id=info:pmid/12808136&rft_jstor_id=3139860&rfr_iscdi=true