Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts
Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2003-06, Vol.100 (13), p.7996-8001 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8001 |
---|---|
container_issue | 13 |
container_start_page | 7996 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Stump, Craig S. Short, Kevin R. Bigelow, Maureen L. Schimke, Jill M. Nair, K. Sreekumaran |
description | Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. |
doi_str_mv | 10.1073/pnas.1332551100 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_3139860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3139860</jstor_id><sourcerecordid>3139860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-bd261bea38b14da4ea3457ecc2ef0072b035d22e50530af4db2b3768c6d6ebb13</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEokvhzAWBxQFxaNrxR-zkwGFVFVqphYouZ8txHDZLYgfbQfS_x9GuugUJOHlk_97zjP2y7DmGYwyCnoxWhWNMKSkKjAEeZAsMFc45q-BhtgAgIi8ZYQfZkxA2AFAVJTzODjApocSUL7LxrG2Njsi16MKGqe8schadT4Oy6Oab6U1UPbqagu4Nuuqi02tnG9-lzeXqGl1710w6ds4ezXU0SX5za-PahC4cIWUbNHz-uEQrr2zQvhtjeJo9alUfzLPdeph9eX-2Oj3PLz99uDhdXuaaExrzuiEc10bRssasUSxVrBBGa2JaAEFqoEVDiCmgoKBa1tSkpoKXmjfc1DWmh9m7re841YNptLHRq16OvhuUv5VOdfL3E9ut5Vf3Q2LOBMz6Nzu9d98nE6IcuqBN3ytr3BSkoAyXwCCBb_8J4lIUJWMkfdf_PLHgAld49nz9B7hxk7fpvSRJvaVb-dzhyRbS3oXgTXs3HAY5p0PO6ZD7dCTFy_tvsud3cUjAqx0wK_d2yY9KUVX83rR_IWQ79X00P2NCX2zRTYjO37EU06rkQH8B_GfX7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201340361</pqid></control><display><type>article</type><title>Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts</title><source>JSTOR Archive Collection A-Z Listing</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Stump, Craig S. ; Short, Kevin R. ; Bigelow, Maureen L. ; Schimke, Jill M. ; Nair, K. Sreekumaran</creator><creatorcontrib>Stump, Craig S. ; Short, Kevin R. ; Bigelow, Maureen L. ; Schimke, Jill M. ; Nair, K. Sreekumaran</creatorcontrib><description>Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1332551100</identifier><identifier>PMID: 12808136</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine Triphosphate - metabolism ; Adult ; Amino acids ; Biological Sciences ; Cell Nucleus - metabolism ; Citrate (si)-Synthase - metabolism ; Citrates ; Diabetes ; Diabetes Mellitus, Type 2 - metabolism ; DNA, Complementary - metabolism ; Dose-Response Relationship, Drug ; Effects ; Electron Transport Complex IV - metabolism ; Enzymes ; Female ; Glucose Tolerance Test ; Humans ; Insulin ; Insulin - pharmacology ; Male ; Messenger RNA ; Mitochondria - metabolism ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscles ; Muscular system ; Oxygen - metabolism ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Quadriceps muscle ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonucleic acid ; RNA ; RNA - metabolism ; RNA, Messenger - metabolism ; Skeletal muscle ; Substrate Specificity ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-06, Vol.100 (13), p.7996-8001</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 24, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-bd261bea38b14da4ea3457ecc2ef0072b035d22e50530af4db2b3768c6d6ebb13</citedby><cites>FETCH-LOGICAL-c623t-bd261bea38b14da4ea3457ecc2ef0072b035d22e50530af4db2b3768c6d6ebb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3139860$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3139860$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27933,27934,53800,53802,58026,58259</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12808136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stump, Craig S.</creatorcontrib><creatorcontrib>Short, Kevin R.</creatorcontrib><creatorcontrib>Bigelow, Maureen L.</creatorcontrib><creatorcontrib>Schimke, Jill M.</creatorcontrib><creatorcontrib>Nair, K. Sreekumaran</creatorcontrib><title>Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Adult</subject><subject>Amino acids</subject><subject>Biological Sciences</subject><subject>Cell Nucleus - metabolism</subject><subject>Citrate (si)-Synthase - metabolism</subject><subject>Citrates</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>DNA, Complementary - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Effects</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Enzymes</subject><subject>Female</subject><subject>Glucose Tolerance Test</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - pharmacology</subject><subject>Male</subject><subject>Messenger RNA</subject><subject>Mitochondria - metabolism</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscles</subject><subject>Muscular system</subject><subject>Oxygen - metabolism</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Quadriceps muscle</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Skeletal muscle</subject><subject>Substrate Specificity</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1v1DAQxSMEokvhzAWBxQFxaNrxR-zkwGFVFVqphYouZ8txHDZLYgfbQfS_x9GuugUJOHlk_97zjP2y7DmGYwyCnoxWhWNMKSkKjAEeZAsMFc45q-BhtgAgIi8ZYQfZkxA2AFAVJTzODjApocSUL7LxrG2Njsi16MKGqe8schadT4Oy6Oab6U1UPbqagu4Nuuqi02tnG9-lzeXqGl1710w6ds4ezXU0SX5za-PahC4cIWUbNHz-uEQrr2zQvhtjeJo9alUfzLPdeph9eX-2Oj3PLz99uDhdXuaaExrzuiEc10bRssasUSxVrBBGa2JaAEFqoEVDiCmgoKBa1tSkpoKXmjfc1DWmh9m7re841YNptLHRq16OvhuUv5VOdfL3E9ut5Vf3Q2LOBMz6Nzu9d98nE6IcuqBN3ytr3BSkoAyXwCCBb_8J4lIUJWMkfdf_PLHgAld49nz9B7hxk7fpvSRJvaVb-dzhyRbS3oXgTXs3HAY5p0PO6ZD7dCTFy_tvsud3cUjAqx0wK_d2yY9KUVX83rR_IWQ79X00P2NCX2zRTYjO37EU06rkQH8B_GfX7w</recordid><startdate>20030624</startdate><enddate>20030624</enddate><creator>Stump, Craig S.</creator><creator>Short, Kevin R.</creator><creator>Bigelow, Maureen L.</creator><creator>Schimke, Jill M.</creator><creator>Nair, K. Sreekumaran</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030624</creationdate><title>Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts</title><author>Stump, Craig S. ; Short, Kevin R. ; Bigelow, Maureen L. ; Schimke, Jill M. ; Nair, K. Sreekumaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-bd261bea38b14da4ea3457ecc2ef0072b035d22e50530af4db2b3768c6d6ebb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Adult</topic><topic>Amino acids</topic><topic>Biological Sciences</topic><topic>Cell Nucleus - metabolism</topic><topic>Citrate (si)-Synthase - metabolism</topic><topic>Citrates</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>DNA, Complementary - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Effects</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Enzymes</topic><topic>Female</topic><topic>Glucose Tolerance Test</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - pharmacology</topic><topic>Male</topic><topic>Messenger RNA</topic><topic>Mitochondria - metabolism</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscles</topic><topic>Muscular system</topic><topic>Oxygen - metabolism</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Quadriceps muscle</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Skeletal muscle</topic><topic>Substrate Specificity</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stump, Craig S.</creatorcontrib><creatorcontrib>Short, Kevin R.</creatorcontrib><creatorcontrib>Bigelow, Maureen L.</creatorcontrib><creatorcontrib>Schimke, Jill M.</creatorcontrib><creatorcontrib>Nair, K. Sreekumaran</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stump, Craig S.</au><au>Short, Kevin R.</au><au>Bigelow, Maureen L.</au><au>Schimke, Jill M.</au><au>Nair, K. Sreekumaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-06-24</date><risdate>2003</risdate><volume>100</volume><issue>13</issue><spage>7996</spage><epage>8001</epage><pages>7996-8001</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12808136</pmid><doi>10.1073/pnas.1332551100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-06, Vol.100 (13), p.7996-8001 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_3139860 |
source | JSTOR Archive Collection A-Z Listing; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphate - metabolism Adult Amino acids Biological Sciences Cell Nucleus - metabolism Citrate (si)-Synthase - metabolism Citrates Diabetes Diabetes Mellitus, Type 2 - metabolism DNA, Complementary - metabolism Dose-Response Relationship, Drug Effects Electron Transport Complex IV - metabolism Enzymes Female Glucose Tolerance Test Humans Insulin Insulin - pharmacology Male Messenger RNA Mitochondria - metabolism Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Muscles Muscular system Oxygen - metabolism Protein Biosynthesis Protein synthesis Proteins Quadriceps muscle Reverse Transcriptase Polymerase Chain Reaction Ribonucleic acid RNA RNA - metabolism RNA, Messenger - metabolism Skeletal muscle Substrate Specificity Time Factors |
title | Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T01%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Insulin%20on%20Human%20Skeletal%20Muscle%20Mitochondrial%20ATP%20Production,%20Protein%20Synthesis,%20and%20mRNA%20Transcripts&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stump,%20Craig%20S.&rft.date=2003-06-24&rft.volume=100&rft.issue=13&rft.spage=7996&rft.epage=8001&rft.pages=7996-8001&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1332551100&rft_dat=%3Cjstor_proqu%3E3139860%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201340361&rft_id=info:pmid/12808136&rft_jstor_id=3139860&rfr_iscdi=true |