Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information
By viewing quadratic and other second-order finite population functions as totals or means over a derived synthetic finite population, we show that the recently proposed model calibration and pseudoempirical likelihood methods for effective use of auxiliary information from survey data can be readil...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2002-06, Vol.97 (458), p.535-543 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 543 |
---|---|
container_issue | 458 |
container_start_page | 535 |
container_title | Journal of the American Statistical Association |
container_volume | 97 |
creator | Sitter, Randy R Wu, Changbao |
description | By viewing quadratic and other second-order finite population functions as totals or means over a derived synthetic finite population, we show that the recently proposed model calibration and pseudoempirical likelihood methods for effective use of auxiliary information from survey data can be readily extended to obtain efficient estimators of quadratic and other second-order finite population functions. In particular, estimation of a finite population variance, covariance, or variance of a linear estimator can be greatly improved when auxiliary information is available. The proposed methods are model assisted in that the resulting estimators are asymptotically design unbiased irrespective of the correctness of a working model but very efficient if the working model is nearly correct. They have a number of attractive features, which include applicability to a general sampling design, incorporation of information on possibly multivariate auxiliary variables, and the ability to entertain linear or nonlinear working models, and they result in nonnegative estimates for certain strictly positive quantities such as variances. Several existing estimators are shown to be special cases of the proposed general methodology under a linear working model. |
doi_str_mv | 10.1198/016214502760047069 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_3085669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3085669</jstor_id><sourcerecordid>3085669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-cecc8ee49cff8251b8e0011ad20ce8d33dc6bd29a974fda632e1e15e37a8ed853</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_QFwEF-5G85hHZuGiSKuFggoK7oY0c4Mp06QmGbT_3tQRFwreTW443zlcDkKnlFxSWosrQktG84KwqiQkr0hZ76ERLXiVsSp_2UejHZAloj5ERyGsSJpKiBHSU62NMmAjnoZo1jIaZ7HT-LGXrU8_hWfGmgj4wW36bpBnvVW7JWBjcXxNmocAVsHOOOk_TGek3-K51c4PicfoQMsuwMn3O0bPs-nTzV22uL-d30wWmcoZi5kCpQRAXiutBSvoUgAhlMqWEQWi5bxV5bJltayrXLey5Awo0AJ4JQW0ouBjdDHkbrx76yHEZm2Cgq6TFlwfGl4TUeecJfD8F7hyvbfptiY1JigraZkgNkDKuxA86GbjU0V-21DS7Hpv_vaeTGeDaRWi8z8OTkRRfsnXg2yGdt6d79omym3nvPbSKpOu_Cf-E4Oxk28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274812616</pqid></control><display><type>article</type><title>Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Taylor & Francis Journals Complete</source><creator>Sitter, Randy R ; Wu, Changbao</creator><creatorcontrib>Sitter, Randy R ; Wu, Changbao</creatorcontrib><description>By viewing quadratic and other second-order finite population functions as totals or means over a derived synthetic finite population, we show that the recently proposed model calibration and pseudoempirical likelihood methods for effective use of auxiliary information from survey data can be readily extended to obtain efficient estimators of quadratic and other second-order finite population functions. In particular, estimation of a finite population variance, covariance, or variance of a linear estimator can be greatly improved when auxiliary information is available. The proposed methods are model assisted in that the resulting estimators are asymptotically design unbiased irrespective of the correctness of a working model but very efficient if the working model is nearly correct. They have a number of attractive features, which include applicability to a general sampling design, incorporation of information on possibly multivariate auxiliary variables, and the ability to entertain linear or nonlinear working models, and they result in nonnegative estimates for certain strictly positive quantities such as variances. Several existing estimators are shown to be special cases of the proposed general methodology under a linear working model.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/016214502760047069</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Calibration ; Estimation ; Estimation methods ; Estimators ; Generalized regression estimator ; Linear models ; Mathematical models ; Model calibration ; Model-assisted approach ; Population ; Population estimates ; Population mean ; Pseudoempirical likelihood ; Random sampling ; Sampling ; Scalars ; Statistical analysis ; Statistical discrepancies ; Statistical methods ; Statistical models ; Statistical variance ; Statistics ; Survey sampling ; Synthetic populations ; Theory and Methods ; Variance ; Variance estimation</subject><ispartof>Journal of the American Statistical Association, 2002-06, Vol.97 (458), p.535-543</ispartof><rights>American Statistical Association 2002</rights><rights>Copyright 2002 American Statistical Association</rights><rights>Copyright American Statistical Association Jun 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-cecc8ee49cff8251b8e0011ad20ce8d33dc6bd29a974fda632e1e15e37a8ed853</citedby><cites>FETCH-LOGICAL-c422t-cecc8ee49cff8251b8e0011ad20ce8d33dc6bd29a974fda632e1e15e37a8ed853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3085669$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3085669$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254,59647,60436</link.rule.ids></links><search><creatorcontrib>Sitter, Randy R</creatorcontrib><creatorcontrib>Wu, Changbao</creatorcontrib><title>Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information</title><title>Journal of the American Statistical Association</title><description>By viewing quadratic and other second-order finite population functions as totals or means over a derived synthetic finite population, we show that the recently proposed model calibration and pseudoempirical likelihood methods for effective use of auxiliary information from survey data can be readily extended to obtain efficient estimators of quadratic and other second-order finite population functions. In particular, estimation of a finite population variance, covariance, or variance of a linear estimator can be greatly improved when auxiliary information is available. The proposed methods are model assisted in that the resulting estimators are asymptotically design unbiased irrespective of the correctness of a working model but very efficient if the working model is nearly correct. They have a number of attractive features, which include applicability to a general sampling design, incorporation of information on possibly multivariate auxiliary variables, and the ability to entertain linear or nonlinear working models, and they result in nonnegative estimates for certain strictly positive quantities such as variances. Several existing estimators are shown to be special cases of the proposed general methodology under a linear working model.</description><subject>Calibration</subject><subject>Estimation</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Generalized regression estimator</subject><subject>Linear models</subject><subject>Mathematical models</subject><subject>Model calibration</subject><subject>Model-assisted approach</subject><subject>Population</subject><subject>Population estimates</subject><subject>Population mean</subject><subject>Pseudoempirical likelihood</subject><subject>Random sampling</subject><subject>Sampling</subject><subject>Scalars</subject><subject>Statistical analysis</subject><subject>Statistical discrepancies</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Survey sampling</subject><subject>Synthetic populations</subject><subject>Theory and Methods</subject><subject>Variance</subject><subject>Variance estimation</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_QFwEF-5G85hHZuGiSKuFggoK7oY0c4Mp06QmGbT_3tQRFwreTW443zlcDkKnlFxSWosrQktG84KwqiQkr0hZ76ERLXiVsSp_2UejHZAloj5ERyGsSJpKiBHSU62NMmAjnoZo1jIaZ7HT-LGXrU8_hWfGmgj4wW36bpBnvVW7JWBjcXxNmocAVsHOOOk_TGek3-K51c4PicfoQMsuwMn3O0bPs-nTzV22uL-d30wWmcoZi5kCpQRAXiutBSvoUgAhlMqWEQWi5bxV5bJltayrXLey5Awo0AJ4JQW0ouBjdDHkbrx76yHEZm2Cgq6TFlwfGl4TUeecJfD8F7hyvbfptiY1JigraZkgNkDKuxA86GbjU0V-21DS7Hpv_vaeTGeDaRWi8z8OTkRRfsnXg2yGdt6d79omym3nvPbSKpOu_Cf-E4Oxk28</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Sitter, Randy R</creator><creator>Wu, Changbao</creator><general>Taylor & Francis</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20020601</creationdate><title>Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information</title><author>Sitter, Randy R ; Wu, Changbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-cecc8ee49cff8251b8e0011ad20ce8d33dc6bd29a974fda632e1e15e37a8ed853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Calibration</topic><topic>Estimation</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Generalized regression estimator</topic><topic>Linear models</topic><topic>Mathematical models</topic><topic>Model calibration</topic><topic>Model-assisted approach</topic><topic>Population</topic><topic>Population estimates</topic><topic>Population mean</topic><topic>Pseudoempirical likelihood</topic><topic>Random sampling</topic><topic>Sampling</topic><topic>Scalars</topic><topic>Statistical analysis</topic><topic>Statistical discrepancies</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Survey sampling</topic><topic>Synthetic populations</topic><topic>Theory and Methods</topic><topic>Variance</topic><topic>Variance estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sitter, Randy R</creatorcontrib><creatorcontrib>Wu, Changbao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sitter, Randy R</au><au>Wu, Changbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>97</volume><issue>458</issue><spage>535</spage><epage>543</epage><pages>535-543</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>By viewing quadratic and other second-order finite population functions as totals or means over a derived synthetic finite population, we show that the recently proposed model calibration and pseudoempirical likelihood methods for effective use of auxiliary information from survey data can be readily extended to obtain efficient estimators of quadratic and other second-order finite population functions. In particular, estimation of a finite population variance, covariance, or variance of a linear estimator can be greatly improved when auxiliary information is available. The proposed methods are model assisted in that the resulting estimators are asymptotically design unbiased irrespective of the correctness of a working model but very efficient if the working model is nearly correct. They have a number of attractive features, which include applicability to a general sampling design, incorporation of information on possibly multivariate auxiliary variables, and the ability to entertain linear or nonlinear working models, and they result in nonnegative estimates for certain strictly positive quantities such as variances. Several existing estimators are shown to be special cases of the proposed general methodology under a linear working model.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1198/016214502760047069</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2002-06, Vol.97 (458), p.535-543 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_jstor_primary_3085669 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Taylor & Francis Journals Complete |
subjects | Calibration Estimation Estimation methods Estimators Generalized regression estimator Linear models Mathematical models Model calibration Model-assisted approach Population Population estimates Population mean Pseudoempirical likelihood Random sampling Sampling Scalars Statistical analysis Statistical discrepancies Statistical methods Statistical models Statistical variance Statistics Survey sampling Synthetic populations Theory and Methods Variance Variance estimation |
title | Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Estimation%20of%20Quadratic%20Finite%20Population%20Functions%20in%20the%20Presence%20of%20Auxiliary%20Information&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Sitter,%20Randy%20R&rft.date=2002-06-01&rft.volume=97&rft.issue=458&rft.spage=535&rft.epage=543&rft.pages=535-543&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/016214502760047069&rft_dat=%3Cjstor_proqu%3E3085669%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274812616&rft_id=info:pmid/&rft_jstor_id=3085669&rfr_iscdi=true |