Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information

By viewing quadratic and other second-order finite population functions as totals or means over a derived synthetic finite population, we show that the recently proposed model calibration and pseudoempirical likelihood methods for effective use of auxiliary information from survey data can be readil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2002-06, Vol.97 (458), p.535-543
Hauptverfasser: Sitter, Randy R, Wu, Changbao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 543
container_issue 458
container_start_page 535
container_title Journal of the American Statistical Association
container_volume 97
creator Sitter, Randy R
Wu, Changbao
description By viewing quadratic and other second-order finite population functions as totals or means over a derived synthetic finite population, we show that the recently proposed model calibration and pseudoempirical likelihood methods for effective use of auxiliary information from survey data can be readily extended to obtain efficient estimators of quadratic and other second-order finite population functions. In particular, estimation of a finite population variance, covariance, or variance of a linear estimator can be greatly improved when auxiliary information is available. The proposed methods are model assisted in that the resulting estimators are asymptotically design unbiased irrespective of the correctness of a working model but very efficient if the working model is nearly correct. They have a number of attractive features, which include applicability to a general sampling design, incorporation of information on possibly multivariate auxiliary variables, and the ability to entertain linear or nonlinear working models, and they result in nonnegative estimates for certain strictly positive quantities such as variances. Several existing estimators are shown to be special cases of the proposed general methodology under a linear working model.
doi_str_mv 10.1198/016214502760047069
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_3085669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3085669</jstor_id><sourcerecordid>3085669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-cecc8ee49cff8251b8e0011ad20ce8d33dc6bd29a974fda632e1e15e37a8ed853</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_QFwEF-5G85hHZuGiSKuFggoK7oY0c4Mp06QmGbT_3tQRFwreTW443zlcDkKnlFxSWosrQktG84KwqiQkr0hZ76ERLXiVsSp_2UejHZAloj5ERyGsSJpKiBHSU62NMmAjnoZo1jIaZ7HT-LGXrU8_hWfGmgj4wW36bpBnvVW7JWBjcXxNmocAVsHOOOk_TGek3-K51c4PicfoQMsuwMn3O0bPs-nTzV22uL-d30wWmcoZi5kCpQRAXiutBSvoUgAhlMqWEQWi5bxV5bJltayrXLey5Awo0AJ4JQW0ouBjdDHkbrx76yHEZm2Cgq6TFlwfGl4TUeecJfD8F7hyvbfptiY1JigraZkgNkDKuxA86GbjU0V-21DS7Hpv_vaeTGeDaRWi8z8OTkRRfsnXg2yGdt6d79omym3nvPbSKpOu_Cf-E4Oxk28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274812616</pqid></control><display><type>article</type><title>Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Taylor &amp; Francis Journals Complete</source><creator>Sitter, Randy R ; Wu, Changbao</creator><creatorcontrib>Sitter, Randy R ; Wu, Changbao</creatorcontrib><description>By viewing quadratic and other second-order finite population functions as totals or means over a derived synthetic finite population, we show that the recently proposed model calibration and pseudoempirical likelihood methods for effective use of auxiliary information from survey data can be readily extended to obtain efficient estimators of quadratic and other second-order finite population functions. In particular, estimation of a finite population variance, covariance, or variance of a linear estimator can be greatly improved when auxiliary information is available. The proposed methods are model assisted in that the resulting estimators are asymptotically design unbiased irrespective of the correctness of a working model but very efficient if the working model is nearly correct. They have a number of attractive features, which include applicability to a general sampling design, incorporation of information on possibly multivariate auxiliary variables, and the ability to entertain linear or nonlinear working models, and they result in nonnegative estimates for certain strictly positive quantities such as variances. Several existing estimators are shown to be special cases of the proposed general methodology under a linear working model.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/016214502760047069</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Calibration ; Estimation ; Estimation methods ; Estimators ; Generalized regression estimator ; Linear models ; Mathematical models ; Model calibration ; Model-assisted approach ; Population ; Population estimates ; Population mean ; Pseudoempirical likelihood ; Random sampling ; Sampling ; Scalars ; Statistical analysis ; Statistical discrepancies ; Statistical methods ; Statistical models ; Statistical variance ; Statistics ; Survey sampling ; Synthetic populations ; Theory and Methods ; Variance ; Variance estimation</subject><ispartof>Journal of the American Statistical Association, 2002-06, Vol.97 (458), p.535-543</ispartof><rights>American Statistical Association 2002</rights><rights>Copyright 2002 American Statistical Association</rights><rights>Copyright American Statistical Association Jun 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-cecc8ee49cff8251b8e0011ad20ce8d33dc6bd29a974fda632e1e15e37a8ed853</citedby><cites>FETCH-LOGICAL-c422t-cecc8ee49cff8251b8e0011ad20ce8d33dc6bd29a974fda632e1e15e37a8ed853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3085669$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3085669$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254,59647,60436</link.rule.ids></links><search><creatorcontrib>Sitter, Randy R</creatorcontrib><creatorcontrib>Wu, Changbao</creatorcontrib><title>Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information</title><title>Journal of the American Statistical Association</title><description>By viewing quadratic and other second-order finite population functions as totals or means over a derived synthetic finite population, we show that the recently proposed model calibration and pseudoempirical likelihood methods for effective use of auxiliary information from survey data can be readily extended to obtain efficient estimators of quadratic and other second-order finite population functions. In particular, estimation of a finite population variance, covariance, or variance of a linear estimator can be greatly improved when auxiliary information is available. The proposed methods are model assisted in that the resulting estimators are asymptotically design unbiased irrespective of the correctness of a working model but very efficient if the working model is nearly correct. They have a number of attractive features, which include applicability to a general sampling design, incorporation of information on possibly multivariate auxiliary variables, and the ability to entertain linear or nonlinear working models, and they result in nonnegative estimates for certain strictly positive quantities such as variances. Several existing estimators are shown to be special cases of the proposed general methodology under a linear working model.</description><subject>Calibration</subject><subject>Estimation</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Generalized regression estimator</subject><subject>Linear models</subject><subject>Mathematical models</subject><subject>Model calibration</subject><subject>Model-assisted approach</subject><subject>Population</subject><subject>Population estimates</subject><subject>Population mean</subject><subject>Pseudoempirical likelihood</subject><subject>Random sampling</subject><subject>Sampling</subject><subject>Scalars</subject><subject>Statistical analysis</subject><subject>Statistical discrepancies</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Survey sampling</subject><subject>Synthetic populations</subject><subject>Theory and Methods</subject><subject>Variance</subject><subject>Variance estimation</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_QFwEF-5G85hHZuGiSKuFggoK7oY0c4Mp06QmGbT_3tQRFwreTW443zlcDkKnlFxSWosrQktG84KwqiQkr0hZ76ERLXiVsSp_2UejHZAloj5ERyGsSJpKiBHSU62NMmAjnoZo1jIaZ7HT-LGXrU8_hWfGmgj4wW36bpBnvVW7JWBjcXxNmocAVsHOOOk_TGek3-K51c4PicfoQMsuwMn3O0bPs-nTzV22uL-d30wWmcoZi5kCpQRAXiutBSvoUgAhlMqWEQWi5bxV5bJltayrXLey5Awo0AJ4JQW0ouBjdDHkbrx76yHEZm2Cgq6TFlwfGl4TUeecJfD8F7hyvbfptiY1JigraZkgNkDKuxA86GbjU0V-21DS7Hpv_vaeTGeDaRWi8z8OTkRRfsnXg2yGdt6d79omym3nvPbSKpOu_Cf-E4Oxk28</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Sitter, Randy R</creator><creator>Wu, Changbao</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20020601</creationdate><title>Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information</title><author>Sitter, Randy R ; Wu, Changbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-cecc8ee49cff8251b8e0011ad20ce8d33dc6bd29a974fda632e1e15e37a8ed853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Calibration</topic><topic>Estimation</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Generalized regression estimator</topic><topic>Linear models</topic><topic>Mathematical models</topic><topic>Model calibration</topic><topic>Model-assisted approach</topic><topic>Population</topic><topic>Population estimates</topic><topic>Population mean</topic><topic>Pseudoempirical likelihood</topic><topic>Random sampling</topic><topic>Sampling</topic><topic>Scalars</topic><topic>Statistical analysis</topic><topic>Statistical discrepancies</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Survey sampling</topic><topic>Synthetic populations</topic><topic>Theory and Methods</topic><topic>Variance</topic><topic>Variance estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sitter, Randy R</creatorcontrib><creatorcontrib>Wu, Changbao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sitter, Randy R</au><au>Wu, Changbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>97</volume><issue>458</issue><spage>535</spage><epage>543</epage><pages>535-543</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>By viewing quadratic and other second-order finite population functions as totals or means over a derived synthetic finite population, we show that the recently proposed model calibration and pseudoempirical likelihood methods for effective use of auxiliary information from survey data can be readily extended to obtain efficient estimators of quadratic and other second-order finite population functions. In particular, estimation of a finite population variance, covariance, or variance of a linear estimator can be greatly improved when auxiliary information is available. The proposed methods are model assisted in that the resulting estimators are asymptotically design unbiased irrespective of the correctness of a working model but very efficient if the working model is nearly correct. They have a number of attractive features, which include applicability to a general sampling design, incorporation of information on possibly multivariate auxiliary variables, and the ability to entertain linear or nonlinear working models, and they result in nonnegative estimates for certain strictly positive quantities such as variances. Several existing estimators are shown to be special cases of the proposed general methodology under a linear working model.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/016214502760047069</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2002-06, Vol.97 (458), p.535-543
issn 0162-1459
1537-274X
language eng
recordid cdi_jstor_primary_3085669
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Taylor & Francis Journals Complete
subjects Calibration
Estimation
Estimation methods
Estimators
Generalized regression estimator
Linear models
Mathematical models
Model calibration
Model-assisted approach
Population
Population estimates
Population mean
Pseudoempirical likelihood
Random sampling
Sampling
Scalars
Statistical analysis
Statistical discrepancies
Statistical methods
Statistical models
Statistical variance
Statistics
Survey sampling
Synthetic populations
Theory and Methods
Variance
Variance estimation
title Efficient Estimation of Quadratic Finite Population Functions in the Presence of Auxiliary Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Estimation%20of%20Quadratic%20Finite%20Population%20Functions%20in%20the%20Presence%20of%20Auxiliary%20Information&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Sitter,%20Randy%20R&rft.date=2002-06-01&rft.volume=97&rft.issue=458&rft.spage=535&rft.epage=543&rft.pages=535-543&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/016214502760047069&rft_dat=%3Cjstor_proqu%3E3085669%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274812616&rft_id=info:pmid/&rft_jstor_id=3085669&rfr_iscdi=true