Clonal Diversity in Two Rare Perennial Plants:Sagittaria isoetiformisandSagittaria teres(Alismataceae)

Most perennial herbs can produce clones (genetically identical ramets), and the frequency of asexual propagation relative to sexual reproduction can affect genetic and genotypic diversity. The power to detect clones also depends on marker diversity. Using horizontal starch‐gel electrophoresis, we su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plant sciences 2003-01, Vol.164 (1), p.181-188
Hauptverfasser: Edwards, Adrienne L., Sharitz, Rebecca R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 1
container_start_page 181
container_title International journal of plant sciences
container_volume 164
creator Edwards, Adrienne L.
Sharitz, Rebecca R.
description Most perennial herbs can produce clones (genetically identical ramets), and the frequency of asexual propagation relative to sexual reproduction can affect genetic and genotypic diversity. The power to detect clones also depends on marker diversity. Using horizontal starch‐gel electrophoresis, we surveyed two rare perennials found in isolated wetlands:Sagittaria isoetiformis, restricted to the inner coastal plain of southeastern North America, andSagittaria teres, endemic to glacial ponds in northeastern North America. Fifteen polymorphic loci were resolved on 527 individuals across 11 populations (ca. 48 ramets/population) forS. isoetiformis, and 12 polymorphic loci were resolved on 367 individuals across seven populations (ca. 52 ramets/population) forS. teres. Although genets commonly produce clones in these species, we found no significant influence of genotype duplication on genetic structure. Genotypic structure and our power to detect clones did differ among species. The proportion of distinguishable genotypes per population was higher inS. isoetiformis( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $G/ N=0.92\pm 0.12$ \end{document} ) than inS. teres( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $G/ N=0.54\pm 0.21$ \end{document} ). When standardized by the number of polymorphic markers in each population, genotypic diversity was high in both species ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont
doi_str_mv 10.1086/344552
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_3080312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/344552</jstor_id><sourcerecordid>10.1086/344552</sourcerecordid><originalsourceid>FETCH-jstor_primary_30803123</originalsourceid><addsrcrecordid>eNqFy7sKAjEQheEgCt6fwCKlFqvJxuiunXjBUtReBs3KSDaRTFB8e7ewsLM6P3wcxvpSjKXIZhM1nWqd1lhLajVPtJK6XrXQWaKzXDVZm-guhMh1mrdYsbLegeVrfJpAGN8cHT-9PD9AMHxvgnEOK99bcJEWR7hhjBAQOJI3EQsfSiRw1x-J1YuGS4tUQoSLATPqskYBlkzvux022G5Oq11yp-jD-RGwhPA-K5EJJVP1hz-3e0ca</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clonal Diversity in Two Rare Perennial Plants:Sagittaria isoetiformisandSagittaria teres(Alismataceae)</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Edwards, Adrienne L. ; Sharitz, Rebecca R.</creator><creatorcontrib>Edwards, Adrienne L. ; Sharitz, Rebecca R.</creatorcontrib><description>Most perennial herbs can produce clones (genetically identical ramets), and the frequency of asexual propagation relative to sexual reproduction can affect genetic and genotypic diversity. The power to detect clones also depends on marker diversity. Using horizontal starch‐gel electrophoresis, we surveyed two rare perennials found in isolated wetlands:Sagittaria isoetiformis, restricted to the inner coastal plain of southeastern North America, andSagittaria teres, endemic to glacial ponds in northeastern North America. Fifteen polymorphic loci were resolved on 527 individuals across 11 populations (ca. 48 ramets/population) forS. isoetiformis, and 12 polymorphic loci were resolved on 367 individuals across seven populations (ca. 52 ramets/population) forS. teres. Although genets commonly produce clones in these species, we found no significant influence of genotype duplication on genetic structure. Genotypic structure and our power to detect clones did differ among species. The proportion of distinguishable genotypes per population was higher inS. isoetiformis( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $G/ N=0.92\pm 0.12$ \end{document} ) than inS. teres( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $G/ N=0.54\pm 0.21$ \end{document} ). When standardized by the number of polymorphic markers in each population, genotypic diversity was high in both species ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{D}=0.99$ \end{document} inS. isoetiformisand \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{D}=0.94$ \end{document} inS. teres), but genotypes were less evenly distributed acrossS. isoetiformispopulations ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{E}=0.75$ \end{document} ), ranging from 0.60 to 1.00, than acrossS. terespopulations ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{E}=0.84$ \end{document} ), ranging from 0.80 to 0.92. Overall, we had greater power to detect unique genotypes inS. isoetiformisthan inS. teres, demonstrating the importance of reporting some measure of statistical power to distinguish genetic individuals. The combined genetic and genotypic evidence indicates that sexual recruitment from persistent seed banks helps to maintain genetic and genotypic diversity in these species.</description><identifier>ISSN: 1058-5893</identifier><identifier>EISSN: 1537-5315</identifier><identifier>DOI: 10.1086/344552</identifier><language>eng</language><publisher>The University of Chicago Press</publisher><subject>Alleles ; Genetic diversity ; Genetic loci ; Genotypes ; Inbreeding depression ; Plants ; Population genetics ; Population geography ; Population growth ; Species diversity</subject><ispartof>International journal of plant sciences, 2003-01, Vol.164 (1), p.181-188</ispartof><rights>2003 by The University of Chicago. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,803,27924,27925</link.rule.ids></links><search><creatorcontrib>Edwards, Adrienne L.</creatorcontrib><creatorcontrib>Sharitz, Rebecca R.</creatorcontrib><title>Clonal Diversity in Two Rare Perennial Plants:Sagittaria isoetiformisandSagittaria teres(Alismataceae)</title><title>International journal of plant sciences</title><description>Most perennial herbs can produce clones (genetically identical ramets), and the frequency of asexual propagation relative to sexual reproduction can affect genetic and genotypic diversity. The power to detect clones also depends on marker diversity. Using horizontal starch‐gel electrophoresis, we surveyed two rare perennials found in isolated wetlands:Sagittaria isoetiformis, restricted to the inner coastal plain of southeastern North America, andSagittaria teres, endemic to glacial ponds in northeastern North America. Fifteen polymorphic loci were resolved on 527 individuals across 11 populations (ca. 48 ramets/population) forS. isoetiformis, and 12 polymorphic loci were resolved on 367 individuals across seven populations (ca. 52 ramets/population) forS. teres. Although genets commonly produce clones in these species, we found no significant influence of genotype duplication on genetic structure. Genotypic structure and our power to detect clones did differ among species. The proportion of distinguishable genotypes per population was higher inS. isoetiformis( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $G/ N=0.92\pm 0.12$ \end{document} ) than inS. teres( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $G/ N=0.54\pm 0.21$ \end{document} ). When standardized by the number of polymorphic markers in each population, genotypic diversity was high in both species ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{D}=0.99$ \end{document} inS. isoetiformisand \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{D}=0.94$ \end{document} inS. teres), but genotypes were less evenly distributed acrossS. isoetiformispopulations ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{E}=0.75$ \end{document} ), ranging from 0.60 to 1.00, than acrossS. terespopulations ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{E}=0.84$ \end{document} ), ranging from 0.80 to 0.92. Overall, we had greater power to detect unique genotypes inS. isoetiformisthan inS. teres, demonstrating the importance of reporting some measure of statistical power to distinguish genetic individuals. The combined genetic and genotypic evidence indicates that sexual recruitment from persistent seed banks helps to maintain genetic and genotypic diversity in these species.</description><subject>Alleles</subject><subject>Genetic diversity</subject><subject>Genetic loci</subject><subject>Genotypes</subject><subject>Inbreeding depression</subject><subject>Plants</subject><subject>Population genetics</subject><subject>Population geography</subject><subject>Population growth</subject><subject>Species diversity</subject><issn>1058-5893</issn><issn>1537-5315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFy7sKAjEQheEgCt6fwCKlFqvJxuiunXjBUtReBs3KSDaRTFB8e7ewsLM6P3wcxvpSjKXIZhM1nWqd1lhLajVPtJK6XrXQWaKzXDVZm-guhMh1mrdYsbLegeVrfJpAGN8cHT-9PD9AMHxvgnEOK99bcJEWR7hhjBAQOJI3EQsfSiRw1x-J1YuGS4tUQoSLATPqskYBlkzvux022G5Oq11yp-jD-RGwhPA-K5EJJVP1hz-3e0ca</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Edwards, Adrienne L.</creator><creator>Sharitz, Rebecca R.</creator><general>The University of Chicago Press</general><scope/></search><sort><creationdate>200301</creationdate><title>Clonal Diversity in Two Rare Perennial Plants:Sagittaria isoetiformisandSagittaria teres(Alismataceae)</title><author>Edwards, Adrienne L. ; Sharitz, Rebecca R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_30803123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Alleles</topic><topic>Genetic diversity</topic><topic>Genetic loci</topic><topic>Genotypes</topic><topic>Inbreeding depression</topic><topic>Plants</topic><topic>Population genetics</topic><topic>Population geography</topic><topic>Population growth</topic><topic>Species diversity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, Adrienne L.</creatorcontrib><creatorcontrib>Sharitz, Rebecca R.</creatorcontrib><jtitle>International journal of plant sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, Adrienne L.</au><au>Sharitz, Rebecca R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clonal Diversity in Two Rare Perennial Plants:Sagittaria isoetiformisandSagittaria teres(Alismataceae)</atitle><jtitle>International journal of plant sciences</jtitle><date>2003-01</date><risdate>2003</risdate><volume>164</volume><issue>1</issue><spage>181</spage><epage>188</epage><pages>181-188</pages><issn>1058-5893</issn><eissn>1537-5315</eissn><abstract>Most perennial herbs can produce clones (genetically identical ramets), and the frequency of asexual propagation relative to sexual reproduction can affect genetic and genotypic diversity. The power to detect clones also depends on marker diversity. Using horizontal starch‐gel electrophoresis, we surveyed two rare perennials found in isolated wetlands:Sagittaria isoetiformis, restricted to the inner coastal plain of southeastern North America, andSagittaria teres, endemic to glacial ponds in northeastern North America. Fifteen polymorphic loci were resolved on 527 individuals across 11 populations (ca. 48 ramets/population) forS. isoetiformis, and 12 polymorphic loci were resolved on 367 individuals across seven populations (ca. 52 ramets/population) forS. teres. Although genets commonly produce clones in these species, we found no significant influence of genotype duplication on genetic structure. Genotypic structure and our power to detect clones did differ among species. The proportion of distinguishable genotypes per population was higher inS. isoetiformis( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $G/ N=0.92\pm 0.12$ \end{document} ) than inS. teres( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $G/ N=0.54\pm 0.21$ \end{document} ). When standardized by the number of polymorphic markers in each population, genotypic diversity was high in both species ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{D}=0.99$ \end{document} inS. isoetiformisand \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{D}=0.94$ \end{document} inS. teres), but genotypes were less evenly distributed acrossS. isoetiformispopulations ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{E}=0.75$ \end{document} ), ranging from 0.60 to 1.00, than acrossS. terespopulations ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\overline{E}=0.84$ \end{document} ), ranging from 0.80 to 0.92. Overall, we had greater power to detect unique genotypes inS. isoetiformisthan inS. teres, demonstrating the importance of reporting some measure of statistical power to distinguish genetic individuals. The combined genetic and genotypic evidence indicates that sexual recruitment from persistent seed banks helps to maintain genetic and genotypic diversity in these species.</abstract><pub>The University of Chicago Press</pub><doi>10.1086/344552</doi></addata></record>
fulltext fulltext
identifier ISSN: 1058-5893
ispartof International journal of plant sciences, 2003-01, Vol.164 (1), p.181-188
issn 1058-5893
1537-5315
language eng
recordid cdi_jstor_primary_3080312
source JSTOR Archive Collection A-Z Listing
subjects Alleles
Genetic diversity
Genetic loci
Genotypes
Inbreeding depression
Plants
Population genetics
Population geography
Population growth
Species diversity
title Clonal Diversity in Two Rare Perennial Plants:Sagittaria isoetiformisandSagittaria teres(Alismataceae)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clonal%20Diversity%20in%20Two%20Rare%20Perennial%20Plants:Sagittaria%20isoetiformisandSagittaria%20teres(Alismataceae)&rft.jtitle=International%20journal%20of%20plant%20sciences&rft.au=Edwards,%20Adrienne%C2%A0L.&rft.date=2003-01&rft.volume=164&rft.issue=1&rft.spage=181&rft.epage=188&rft.pages=181-188&rft.issn=1058-5893&rft.eissn=1537-5315&rft_id=info:doi/10.1086/344552&rft_dat=%3Cjstor%3E10.1086/344552%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=10.1086/344552&rfr_iscdi=true