Catalysis of Electron Transfer during Activation of O2 by the Flavoprotein Glucose Oxidase

Two prototropic forms of glucose oxidase undergo aerobic oxidation reactions that convert FADH- to FAD and form H2O2 as a product. Limiting rate constants of kcat/KM(O2) = (5.7 ± 1.8) × 102 M-1· s-1 and kcat/KM(O2) = (1.5 ± 0.3) × 106 M-1· s-1 are observed at high and low pH, respectively. Reactions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-01, Vol.100 (1), p.62-67
Hauptverfasser: Roth, Justine P., Klinman, Judith P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 1
container_start_page 62
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Roth, Justine P.
Klinman, Judith P.
description Two prototropic forms of glucose oxidase undergo aerobic oxidation reactions that convert FADH- to FAD and form H2O2 as a product. Limiting rate constants of kcat/KM(O2) = (5.7 ± 1.8) × 102 M-1· s-1 and kcat/KM(O2) = (1.5 ± 0.3) × 106 M-1· s-1 are observed at high and low pH, respectively. Reactions exhibit oxygen-18 kinetic isotope effects but no solvent kinetic isotope effects, consistent with mechanisms of rate-limiting electron transfer from flavin to O2. Site-directed mutagenesis studies reveal that the pH dependence of the rates is caused by protonation of a highly conserved histidine in the active site. Temperature studies (283-323 K) indicate that protonation of His-516 results in a reduction of the activation energy barrier by 6.0 kcal· mol-1 (0.26 eV). Within the context of Marcus theory, catalysis of electron transfer is attributed to a 19-kcal· mol-1 (0.82 eV) decrease in the reorganization energy and a much smaller 2.2-kcal· mol-1 (0.095 eV) enhancement of the reaction driving force. An explanation is advanced that is based on changes in outer-sphere reorganization as a function of pH. The active site is optimized at low pH, but not at high pH or in the H516A mutant where rates resemble the uncatalyzed reaction in solution.
doi_str_mv 10.1073/pnas.252644599
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_jstor_primary_3074109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3074109</jstor_id><sourcerecordid>3074109</sourcerecordid><originalsourceid>FETCH-LOGICAL-j275t-fd936e7d0d6106e651e7bc57f384f8fbf6fbd0257b127721967d070ca1fdfd83</originalsourceid><addsrcrecordid>eNp9kTtP5DAURi20CGaBlmqFLKQtA9eOH0mxBRrxWAlpmqloLCe2waMQD7YzYv49lhhgaba6xTn3ofshdErggoCsL9ejTheUU8EYb9s9NCPQkkqwFn6gGQCVVcMoO0Q_U1oBQMsbOECHhHIQFNgMPcx11sM2-YSDw9eD7XMMI15GPSZnIzZT9OMjvuqz3-jsCyraguJui_OTxTeD3oR1DNn6Ed8OUx-SxYtXb3Syx2jf6SHZk109Qsub6-X8rrpf3P6dX91XKyp5rpxpa2GlASMICCs4sbLruXR1w1zjOidcZ4By2REqJSWtKK6EXhNnnGnqI_Tnfex66p6t6e2Yox7UOvpnHbcqaK--k9E_qcewUQwYYbz0n-_6Y3iZbMpqFaY4losVBVIzQlso0tm_Sz6nfzyyCL93QgnkCwMoogRVbhqGbF9z8X79x_vCq5RD_OQ1SFaCrd8AgUCW0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201341290</pqid></control><display><type>article</type><title>Catalysis of Electron Transfer during Activation of O2 by the Flavoprotein Glucose Oxidase</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Roth, Justine P. ; Klinman, Judith P.</creator><creatorcontrib>Roth, Justine P. ; Klinman, Judith P.</creatorcontrib><description>Two prototropic forms of glucose oxidase undergo aerobic oxidation reactions that convert FADH- to FAD and form H2O2 as a product. Limiting rate constants of kcat/KM(O2) = (5.7 ± 1.8) × 102 M-1· s-1 and kcat/KM(O2) = (1.5 ± 0.3) × 106 M-1· s-1 are observed at high and low pH, respectively. Reactions exhibit oxygen-18 kinetic isotope effects but no solvent kinetic isotope effects, consistent with mechanisms of rate-limiting electron transfer from flavin to O2. Site-directed mutagenesis studies reveal that the pH dependence of the rates is caused by protonation of a highly conserved histidine in the active site. Temperature studies (283-323 K) indicate that protonation of His-516 results in a reduction of the activation energy barrier by 6.0 kcal· mol-1 (0.26 eV). Within the context of Marcus theory, catalysis of electron transfer is attributed to a 19-kcal· mol-1 (0.82 eV) decrease in the reorganization energy and a much smaller 2.2-kcal· mol-1 (0.095 eV) enhancement of the reaction driving force. An explanation is advanced that is based on changes in outer-sphere reorganization as a function of pH. The active site is optimized at low pH, but not at high pH or in the H516A mutant where rates resemble the uncatalyzed reaction in solution.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.252644599</identifier><identifier>PMID: 12506204</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Aspergillus niger - enzymology ; Base Sequence ; Biochemistry ; Biological Sciences ; Catalysis ; Chemical reactions ; Cloning, Molecular ; DNA Primers ; Electron transfer ; Electron Transport ; Electrons ; Electrostatics ; Enzymes ; Flavin-Adenine Dinucleotide - metabolism ; Glucose ; Glucose Oxidase - chemistry ; Glucose Oxidase - metabolism ; Hydrogen-Ion Concentration ; Kinetics ; Oxidases ; Oxygen ; Oxygen Consumption ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Solvents ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-01, Vol.100 (1), p.62-67</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 7, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3074109$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3074109$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12506204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roth, Justine P.</creatorcontrib><creatorcontrib>Klinman, Judith P.</creatorcontrib><title>Catalysis of Electron Transfer during Activation of O2 by the Flavoprotein Glucose Oxidase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Two prototropic forms of glucose oxidase undergo aerobic oxidation reactions that convert FADH- to FAD and form H2O2 as a product. Limiting rate constants of kcat/KM(O2) = (5.7 ± 1.8) × 102 M-1· s-1 and kcat/KM(O2) = (1.5 ± 0.3) × 106 M-1· s-1 are observed at high and low pH, respectively. Reactions exhibit oxygen-18 kinetic isotope effects but no solvent kinetic isotope effects, consistent with mechanisms of rate-limiting electron transfer from flavin to O2. Site-directed mutagenesis studies reveal that the pH dependence of the rates is caused by protonation of a highly conserved histidine in the active site. Temperature studies (283-323 K) indicate that protonation of His-516 results in a reduction of the activation energy barrier by 6.0 kcal· mol-1 (0.26 eV). Within the context of Marcus theory, catalysis of electron transfer is attributed to a 19-kcal· mol-1 (0.82 eV) decrease in the reorganization energy and a much smaller 2.2-kcal· mol-1 (0.095 eV) enhancement of the reaction driving force. An explanation is advanced that is based on changes in outer-sphere reorganization as a function of pH. The active site is optimized at low pH, but not at high pH or in the H516A mutant where rates resemble the uncatalyzed reaction in solution.</description><subject>Active sites</subject><subject>Aspergillus niger - enzymology</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Chemical reactions</subject><subject>Cloning, Molecular</subject><subject>DNA Primers</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>Electrostatics</subject><subject>Enzymes</subject><subject>Flavin-Adenine Dinucleotide - metabolism</subject><subject>Glucose</subject><subject>Glucose Oxidase - chemistry</subject><subject>Glucose Oxidase - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Oxidases</subject><subject>Oxygen</subject><subject>Oxygen Consumption</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Solvents</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kTtP5DAURi20CGaBlmqFLKQtA9eOH0mxBRrxWAlpmqloLCe2waMQD7YzYv49lhhgaba6xTn3ofshdErggoCsL9ejTheUU8EYb9s9NCPQkkqwFn6gGQCVVcMoO0Q_U1oBQMsbOECHhHIQFNgMPcx11sM2-YSDw9eD7XMMI15GPSZnIzZT9OMjvuqz3-jsCyraguJui_OTxTeD3oR1DNn6Ed8OUx-SxYtXb3Syx2jf6SHZk109Qsub6-X8rrpf3P6dX91XKyp5rpxpa2GlASMICCs4sbLruXR1w1zjOidcZ4By2REqJSWtKK6EXhNnnGnqI_Tnfex66p6t6e2Yox7UOvpnHbcqaK--k9E_qcewUQwYYbz0n-_6Y3iZbMpqFaY4losVBVIzQlso0tm_Sz6nfzyyCL93QgnkCwMoogRVbhqGbF9z8X79x_vCq5RD_OQ1SFaCrd8AgUCW0Q</recordid><startdate>20030107</startdate><enddate>20030107</enddate><creator>Roth, Justine P.</creator><creator>Klinman, Judith P.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20030107</creationdate><title>Catalysis of Electron Transfer during Activation of O2 by the Flavoprotein Glucose Oxidase</title><author>Roth, Justine P. ; Klinman, Judith P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j275t-fd936e7d0d6106e651e7bc57f384f8fbf6fbd0257b127721967d070ca1fdfd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Active sites</topic><topic>Aspergillus niger - enzymology</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Chemical reactions</topic><topic>Cloning, Molecular</topic><topic>DNA Primers</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>Electrostatics</topic><topic>Enzymes</topic><topic>Flavin-Adenine Dinucleotide - metabolism</topic><topic>Glucose</topic><topic>Glucose Oxidase - chemistry</topic><topic>Glucose Oxidase - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Oxidases</topic><topic>Oxygen</topic><topic>Oxygen Consumption</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Solvents</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roth, Justine P.</creatorcontrib><creatorcontrib>Klinman, Judith P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roth, Justine P.</au><au>Klinman, Judith P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalysis of Electron Transfer during Activation of O2 by the Flavoprotein Glucose Oxidase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-01-07</date><risdate>2003</risdate><volume>100</volume><issue>1</issue><spage>62</spage><epage>67</epage><pages>62-67</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Two prototropic forms of glucose oxidase undergo aerobic oxidation reactions that convert FADH- to FAD and form H2O2 as a product. Limiting rate constants of kcat/KM(O2) = (5.7 ± 1.8) × 102 M-1· s-1 and kcat/KM(O2) = (1.5 ± 0.3) × 106 M-1· s-1 are observed at high and low pH, respectively. Reactions exhibit oxygen-18 kinetic isotope effects but no solvent kinetic isotope effects, consistent with mechanisms of rate-limiting electron transfer from flavin to O2. Site-directed mutagenesis studies reveal that the pH dependence of the rates is caused by protonation of a highly conserved histidine in the active site. Temperature studies (283-323 K) indicate that protonation of His-516 results in a reduction of the activation energy barrier by 6.0 kcal· mol-1 (0.26 eV). Within the context of Marcus theory, catalysis of electron transfer is attributed to a 19-kcal· mol-1 (0.82 eV) decrease in the reorganization energy and a much smaller 2.2-kcal· mol-1 (0.095 eV) enhancement of the reaction driving force. An explanation is advanced that is based on changes in outer-sphere reorganization as a function of pH. The active site is optimized at low pH, but not at high pH or in the H516A mutant where rates resemble the uncatalyzed reaction in solution.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12506204</pmid><doi>10.1073/pnas.252644599</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-01, Vol.100 (1), p.62-67
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_3074109
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Active sites
Aspergillus niger - enzymology
Base Sequence
Biochemistry
Biological Sciences
Catalysis
Chemical reactions
Cloning, Molecular
DNA Primers
Electron transfer
Electron Transport
Electrons
Electrostatics
Enzymes
Flavin-Adenine Dinucleotide - metabolism
Glucose
Glucose Oxidase - chemistry
Glucose Oxidase - metabolism
Hydrogen-Ion Concentration
Kinetics
Oxidases
Oxygen
Oxygen Consumption
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Solvents
Thermodynamics
title Catalysis of Electron Transfer during Activation of O2 by the Flavoprotein Glucose Oxidase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalysis%20of%20Electron%20Transfer%20during%20Activation%20of%20O2%20by%20the%20Flavoprotein%20Glucose%20Oxidase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Roth,%20Justine%20P.&rft.date=2003-01-07&rft.volume=100&rft.issue=1&rft.spage=62&rft.epage=67&rft.pages=62-67&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.252644599&rft_dat=%3Cjstor_pnas_%3E3074109%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201341290&rft_id=info:pmid/12506204&rft_jstor_id=3074109&rfr_iscdi=true