A vector potential for a partly penetrating well and flux in an approximate method of images

A vector potential is formulated for three-dimensional steady groundwater flow within a framework that is consistent with the Lagrange stream function for twodimensional flow. Analytical expressions are developed for vector potentials of a point-sink and a line-sink (of both finite and infinite leng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2001-09, Vol.457 (2013), p.2093-2111
1. Verfasser: Steward, David R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2111
container_issue 2013
container_start_page 2093
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 457
creator Steward, David R.
description A vector potential is formulated for three-dimensional steady groundwater flow within a framework that is consistent with the Lagrange stream function for twodimensional flow. Analytical expressions are developed for vector potentials of a point-sink and a line-sink (of both finite and infinite length). A previously unpublished vector potential for a partly penetrating well in a horizontal confined aquifer is obtained using the method of images, where an infinite series of image line-sinks is approximated using a finite number of images and two semi-infinite elements. Singularities and discontinuities within these vector potentials are interpreted as producing a virtual discharge connecting vortex lines into continuous loops over infinity. The vector potential is used to accurately and efficiently compute the net flux through surfaces containing singularities in the specific discharge. This net flux quantifies errors in the elevation of streamlines associated with a finite number of images, and provides a measure to ensure a relatively seamless link between local three-dimensional flow and farfield two-dimensional flow.
doi_str_mv 10.1098/rspa.2001.0792
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_jstor_primary_3067495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3067495</jstor_id><sourcerecordid>3067495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-dc13e368c9a1314ccfeccbb5e29a59ace09b53ad498bac0b357afe717a2179a83</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRBIlMKVEwf_gSx2bMfxcdvypVaA-DohWRPvZNdLGke2t93l19fZoEoVgpPnad7Me_NcFC8ZXTCqm9chjrCoKGULqnT1qDhhQrGy0qJ-nGtei1LSij0tnsW4pZRq2aiT4ueS3KBNPpDRJxySg550GQEZIaT-QEYcMAVIbliTW-x7AsOKdP1uT9yQawLjGPzeXUNCco1p41fEdyTjNcbnxZMO-ogv_rynxfe3b76dvy-vPr37cL68Kq3QPJUryzjyurEaGGfC2g6tbVuJlQapwSLVreSwErppwdKWSwUdKqagYkpDw0-LxbzXBh9jwM6MITsIB8OombIxUzZmysZM2eSBOA8Ef8jGvHWYDmbrd2HI0Hz5-nnJtK5vhFSuoowb2nBGBdNCmN9uPK6bCCYTjItxh-ZIeyjztyr_n-o_vb6ap7Yxf9P9ZZzWSmiZ2-XcdjHh_r4N4ZepFVfS_GiE-Xh5wS6YODNnmV_N_I1bb25dQPPATQZjiHA87HhSRTXnd4-yubc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A vector potential for a partly penetrating well and flux in an approximate method of images</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Steward, David R.</creator><creatorcontrib>Steward, David R.</creatorcontrib><description>A vector potential is formulated for three-dimensional steady groundwater flow within a framework that is consistent with the Lagrange stream function for twodimensional flow. Analytical expressions are developed for vector potentials of a point-sink and a line-sink (of both finite and infinite length). A previously unpublished vector potential for a partly penetrating well in a horizontal confined aquifer is obtained using the method of images, where an infinite series of image line-sinks is approximated using a finite number of images and two semi-infinite elements. Singularities and discontinuities within these vector potentials are interpreted as producing a virtual discharge connecting vortex lines into continuous loops over infinity. The vector potential is used to accurately and efficiently compute the net flux through surfaces containing singularities in the specific discharge. This net flux quantifies errors in the elevation of streamlines associated with a finite number of images, and provides a measure to ensure a relatively seamless link between local three-dimensional flow and farfield two-dimensional flow.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2001.0792</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Antennas ; Aquifers ; Curl ; Groundwater ; Infinite series ; Infinity ; Mathematical vectors ; Method Of Images ; Scalars ; Stream functions ; Three-Dimensional ; Vector fields ; Vector Potential ; Vortex Line ; Vortex Sheet ; Vortex sheets</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2001-09, Vol.457 (2013), p.2093-2111</ispartof><rights>Copyright 2001 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-dc13e368c9a1314ccfeccbb5e29a59ace09b53ad498bac0b357afe717a2179a83</citedby><cites>FETCH-LOGICAL-c493t-dc13e368c9a1314ccfeccbb5e29a59ace09b53ad498bac0b357afe717a2179a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3067495$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3067495$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Steward, David R.</creatorcontrib><title>A vector potential for a partly penetrating well and flux in an approximate method of images</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>A vector potential is formulated for three-dimensional steady groundwater flow within a framework that is consistent with the Lagrange stream function for twodimensional flow. Analytical expressions are developed for vector potentials of a point-sink and a line-sink (of both finite and infinite length). A previously unpublished vector potential for a partly penetrating well in a horizontal confined aquifer is obtained using the method of images, where an infinite series of image line-sinks is approximated using a finite number of images and two semi-infinite elements. Singularities and discontinuities within these vector potentials are interpreted as producing a virtual discharge connecting vortex lines into continuous loops over infinity. The vector potential is used to accurately and efficiently compute the net flux through surfaces containing singularities in the specific discharge. This net flux quantifies errors in the elevation of streamlines associated with a finite number of images, and provides a measure to ensure a relatively seamless link between local three-dimensional flow and farfield two-dimensional flow.</description><subject>Antennas</subject><subject>Aquifers</subject><subject>Curl</subject><subject>Groundwater</subject><subject>Infinite series</subject><subject>Infinity</subject><subject>Mathematical vectors</subject><subject>Method Of Images</subject><subject>Scalars</subject><subject>Stream functions</subject><subject>Three-Dimensional</subject><subject>Vector fields</subject><subject>Vector Potential</subject><subject>Vortex Line</subject><subject>Vortex Sheet</subject><subject>Vortex sheets</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQjRBIlMKVEwf_gSx2bMfxcdvypVaA-DohWRPvZNdLGke2t93l19fZoEoVgpPnad7Me_NcFC8ZXTCqm9chjrCoKGULqnT1qDhhQrGy0qJ-nGtei1LSij0tnsW4pZRq2aiT4ueS3KBNPpDRJxySg550GQEZIaT-QEYcMAVIbliTW-x7AsOKdP1uT9yQawLjGPzeXUNCco1p41fEdyTjNcbnxZMO-ogv_rynxfe3b76dvy-vPr37cL68Kq3QPJUryzjyurEaGGfC2g6tbVuJlQapwSLVreSwErppwdKWSwUdKqagYkpDw0-LxbzXBh9jwM6MITsIB8OombIxUzZmysZM2eSBOA8Ef8jGvHWYDmbrd2HI0Hz5-nnJtK5vhFSuoowb2nBGBdNCmN9uPK6bCCYTjItxh-ZIeyjztyr_n-o_vb6ap7Yxf9P9ZZzWSmiZ2-XcdjHh_r4N4ZepFVfS_GiE-Xh5wS6YODNnmV_N_I1bb25dQPPATQZjiHA87HhSRTXnd4-yubc</recordid><startdate>20010908</startdate><enddate>20010908</enddate><creator>Steward, David R.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010908</creationdate><title>A vector potential for a partly penetrating well and flux in an approximate method of images</title><author>Steward, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-dc13e368c9a1314ccfeccbb5e29a59ace09b53ad498bac0b357afe717a2179a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Antennas</topic><topic>Aquifers</topic><topic>Curl</topic><topic>Groundwater</topic><topic>Infinite series</topic><topic>Infinity</topic><topic>Mathematical vectors</topic><topic>Method Of Images</topic><topic>Scalars</topic><topic>Stream functions</topic><topic>Three-Dimensional</topic><topic>Vector fields</topic><topic>Vector Potential</topic><topic>Vortex Line</topic><topic>Vortex Sheet</topic><topic>Vortex sheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steward, David R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steward, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A vector potential for a partly penetrating well and flux in an approximate method of images</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2001-09-08</date><risdate>2001</risdate><volume>457</volume><issue>2013</issue><spage>2093</spage><epage>2111</epage><pages>2093-2111</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A vector potential is formulated for three-dimensional steady groundwater flow within a framework that is consistent with the Lagrange stream function for twodimensional flow. Analytical expressions are developed for vector potentials of a point-sink and a line-sink (of both finite and infinite length). A previously unpublished vector potential for a partly penetrating well in a horizontal confined aquifer is obtained using the method of images, where an infinite series of image line-sinks is approximated using a finite number of images and two semi-infinite elements. Singularities and discontinuities within these vector potentials are interpreted as producing a virtual discharge connecting vortex lines into continuous loops over infinity. The vector potential is used to accurately and efficiently compute the net flux through surfaces containing singularities in the specific discharge. This net flux quantifies errors in the elevation of streamlines associated with a finite number of images, and provides a measure to ensure a relatively seamless link between local three-dimensional flow and farfield two-dimensional flow.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.2001.0792</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2001-09, Vol.457 (2013), p.2093-2111
issn 1364-5021
1471-2946
language eng
recordid cdi_jstor_primary_3067495
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection
subjects Antennas
Aquifers
Curl
Groundwater
Infinite series
Infinity
Mathematical vectors
Method Of Images
Scalars
Stream functions
Three-Dimensional
Vector fields
Vector Potential
Vortex Line
Vortex Sheet
Vortex sheets
title A vector potential for a partly penetrating well and flux in an approximate method of images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20vector%20potential%20for%20a%20partly%20penetrating%20well%20and%20flux%20in%20an%20approximate%20method%20of%20images&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Steward,%20David%20R.&rft.date=2001-09-08&rft.volume=457&rft.issue=2013&rft.spage=2093&rft.epage=2111&rft.pages=2093-2111&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2001.0792&rft_dat=%3Cjstor_royal%3E3067495%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3067495&rfr_iscdi=true