Highly accurate approximations of Green's and Neumann functions on rectangular domains

Green's and Neumann functions of -Δ, where Δ is the Laplacian operator, on a rectangular domain are approximated to any desired degree of accuracy by finite series. Many applications require only a modest number of terms. Upper bounds for the errors in these approximations are also derived. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2001-04, Vol.457 (2008), p.767-772
Hauptverfasser: McCann, R.C., Hazlett, R.D., Babu, D.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Green's and Neumann functions of -Δ, where Δ is the Laplacian operator, on a rectangular domain are approximated to any desired degree of accuracy by finite series. Many applications require only a modest number of terms. Upper bounds for the errors in these approximations are also derived. The approximating functions reveal the structural similarities and differences in Green's and Neumann functions.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2000.0690