Genetic Control of Manno(fructo)kinase Activity in Escherichia coli

Mutants of Escherichia coli unable to use fructose by means of the phosphoenolpyruvate/glycose phosphotransferase system mutate further to permit growth on that ketose by derepression of a manno(fructo)kinase (Mak+phenotype) present in only trace amounts in the parent organisms (Mak-o phenotype). Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2001-12, Vol.98 (26), p.15257-15259
Hauptverfasser: Sproul, Andrew A., Linda T. M. Lambourne, Jims Jean-Jacques D, Kornberg, Hans L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15259
container_issue 26
container_start_page 15257
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 98
creator Sproul, Andrew A.
Linda T. M. Lambourne
Jims Jean-Jacques D
Kornberg, Hans L.
description Mutants of Escherichia coli unable to use fructose by means of the phosphoenolpyruvate/glycose phosphotransferase system mutate further to permit growth on that ketose by derepression of a manno(fructo)kinase (Mak+phenotype) present in only trace amounts in the parent organisms (Mak-o phenotype). The mak gene was located at min 8.8 on the E. coli linkage map as an ORF designated yajF, of hitherto unknown function; it specifies a deduced polypeptide of 344 aa. The derepression of Mak activity was associated with a single base change at position 71 (codon 24) of the gene, where GCC (alanine) in Mak-o has been changed to GAC (aspartate) in Mak+. By cloning selected portions of the total 1,032-bp mak gene into a plasmid that also carried a temperature-sensitive promoter, we showed that the mutation resided in a 117-bp region that does not specify sequences necessary for Mak activity but was located 46 bp upstream of a 915-bp portion that does. Mak+and Mak-o strains differ greatly in the heat stability of the enzyme: at 61°C, mak-o cloned into a mak-o recipient loses 50% of its activity in approximately 6 min, whereas it takes over 30 min to achieve a similar reduction in the activity of mak+cloned into a mak-o strain. However, the Mak activity of the cloned fragment specifying the enzyme without the regulatory region lost activity with a half-life of 29 min irrespective of whether it was derived from a mak+or a mak-o donor, which indicates that the A24D mutation contributes to the high enzyme activity of Mak+mutants by serving to protect Mak from denaturation.
doi_str_mv 10.1073/pnas.211569798
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_3057443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3057443</jstor_id><sourcerecordid>3057443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-a8cd57517d45451621b5b55de33347a6a8bbb383683f585f1c42e4d8e293f9b43</originalsourceid><addsrcrecordid>eNqF0b1vEzEYBnALgWhoWZkQnBhQGS749cfZlliqqC1IrbqU2fL5fMThck5tX0X_exwlDR8DTB7e3-OvB6FXgOeABf24GU2aEwDeKKHkEzQDrKBumMJP0QxjImrJCDtCL1JaYYwVl_g5OgIQjGBBZmhx6UaXva0WYcwxDFXoq2szjuG0j5PN4cN3X05w1ZnN_t7nh8qP1XmySxe9XXpT2TD4E_SsN0NyL_frMfp6cX67-Fxf3Vx-WZxd1ZYTnGsjbccFB9Exzjg0BFrect45SikTpjGybVsqaSNpzyXvwTLiWCcdUbRXLaPH6NNu383Url1nXbmxGfQm-rWJDzoYr_-cjH6pv4V73XAMTYm_38djuJtcynrtk3XDYEYXpqQFoYJzxf4LQRIKEpMC3_0FV2GKY_kDTTBQQRugBc13yMaQUnT94cKA9bZDve1QHzosgTe_P_MX35dWwOkebIOPYyU1aTRwwoXup2HI7kcu9O2_aRGvd2KVcogHQjEXjFH6Exr8uLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201373613</pqid></control><display><type>article</type><title>Genetic Control of Manno(fructo)kinase Activity in Escherichia coli</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sproul, Andrew A. ; Linda T. M. Lambourne ; Jims Jean-Jacques D ; Kornberg, Hans L.</creator><creatorcontrib>Sproul, Andrew A. ; Linda T. M. Lambourne ; Jims Jean-Jacques D ; Kornberg, Hans L.</creatorcontrib><description>Mutants of Escherichia coli unable to use fructose by means of the phosphoenolpyruvate/glycose phosphotransferase system mutate further to permit growth on that ketose by derepression of a manno(fructo)kinase (Mak+phenotype) present in only trace amounts in the parent organisms (Mak-o phenotype). The mak gene was located at min 8.8 on the E. coli linkage map as an ORF designated yajF, of hitherto unknown function; it specifies a deduced polypeptide of 344 aa. The derepression of Mak activity was associated with a single base change at position 71 (codon 24) of the gene, where GCC (alanine) in Mak-o has been changed to GAC (aspartate) in Mak+. By cloning selected portions of the total 1,032-bp mak gene into a plasmid that also carried a temperature-sensitive promoter, we showed that the mutation resided in a 117-bp region that does not specify sequences necessary for Mak activity but was located 46 bp upstream of a 915-bp portion that does. Mak+and Mak-o strains differ greatly in the heat stability of the enzyme: at 61°C, mak-o cloned into a mak-o recipient loses 50% of its activity in approximately 6 min, whereas it takes over 30 min to achieve a similar reduction in the activity of mak+cloned into a mak-o strain. However, the Mak activity of the cloned fragment specifying the enzyme without the regulatory region lost activity with a half-life of 29 min irrespective of whether it was derived from a mak+or a mak-o donor, which indicates that the A24D mutation contributes to the high enzyme activity of Mak+mutants by serving to protect Mak from denaturation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.211569798</identifier><identifier>PMID: 11742072</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biology ; Cell growth ; Chromosome Mapping ; Codons ; Disease ; DNA ; Enzyme activity ; Enzyme Stability ; Enzymes ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Fructokinases - metabolism ; Genetic Linkage ; Genetic mapping ; Genetic mutation ; Genetics ; Genome, Bacterial ; mak gene ; manno(fructo)kinase ; Mutation ; Plasmids</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-12, Vol.98 (26), p.15257-15259</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 18, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-a8cd57517d45451621b5b55de33347a6a8bbb383683f585f1c42e4d8e293f9b43</citedby><cites>FETCH-LOGICAL-c520t-a8cd57517d45451621b5b55de33347a6a8bbb383683f585f1c42e4d8e293f9b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3057443$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3057443$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11742072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sproul, Andrew A.</creatorcontrib><creatorcontrib>Linda T. M. Lambourne</creatorcontrib><creatorcontrib>Jims Jean-Jacques D</creatorcontrib><creatorcontrib>Kornberg, Hans L.</creatorcontrib><title>Genetic Control of Manno(fructo)kinase Activity in Escherichia coli</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mutants of Escherichia coli unable to use fructose by means of the phosphoenolpyruvate/glycose phosphotransferase system mutate further to permit growth on that ketose by derepression of a manno(fructo)kinase (Mak+phenotype) present in only trace amounts in the parent organisms (Mak-o phenotype). The mak gene was located at min 8.8 on the E. coli linkage map as an ORF designated yajF, of hitherto unknown function; it specifies a deduced polypeptide of 344 aa. The derepression of Mak activity was associated with a single base change at position 71 (codon 24) of the gene, where GCC (alanine) in Mak-o has been changed to GAC (aspartate) in Mak+. By cloning selected portions of the total 1,032-bp mak gene into a plasmid that also carried a temperature-sensitive promoter, we showed that the mutation resided in a 117-bp region that does not specify sequences necessary for Mak activity but was located 46 bp upstream of a 915-bp portion that does. Mak+and Mak-o strains differ greatly in the heat stability of the enzyme: at 61°C, mak-o cloned into a mak-o recipient loses 50% of its activity in approximately 6 min, whereas it takes over 30 min to achieve a similar reduction in the activity of mak+cloned into a mak-o strain. However, the Mak activity of the cloned fragment specifying the enzyme without the regulatory region lost activity with a half-life of 29 min irrespective of whether it was derived from a mak+or a mak-o donor, which indicates that the A24D mutation contributes to the high enzyme activity of Mak+mutants by serving to protect Mak from denaturation.</description><subject>Biological Sciences</subject><subject>Biology</subject><subject>Cell growth</subject><subject>Chromosome Mapping</subject><subject>Codons</subject><subject>Disease</subject><subject>DNA</subject><subject>Enzyme activity</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Fructokinases - metabolism</subject><subject>Genetic Linkage</subject><subject>Genetic mapping</subject><subject>Genetic mutation</subject><subject>Genetics</subject><subject>Genome, Bacterial</subject><subject>mak gene</subject><subject>manno(fructo)kinase</subject><subject>Mutation</subject><subject>Plasmids</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0b1vEzEYBnALgWhoWZkQnBhQGS749cfZlliqqC1IrbqU2fL5fMThck5tX0X_exwlDR8DTB7e3-OvB6FXgOeABf24GU2aEwDeKKHkEzQDrKBumMJP0QxjImrJCDtCL1JaYYwVl_g5OgIQjGBBZmhx6UaXva0WYcwxDFXoq2szjuG0j5PN4cN3X05w1ZnN_t7nh8qP1XmySxe9XXpT2TD4E_SsN0NyL_frMfp6cX67-Fxf3Vx-WZxd1ZYTnGsjbccFB9Exzjg0BFrect45SikTpjGybVsqaSNpzyXvwTLiWCcdUbRXLaPH6NNu383Url1nXbmxGfQm-rWJDzoYr_-cjH6pv4V73XAMTYm_38djuJtcynrtk3XDYEYXpqQFoYJzxf4LQRIKEpMC3_0FV2GKY_kDTTBQQRugBc13yMaQUnT94cKA9bZDve1QHzosgTe_P_MX35dWwOkebIOPYyU1aTRwwoXup2HI7kcu9O2_aRGvd2KVcogHQjEXjFH6Exr8uLk</recordid><startdate>20011218</startdate><enddate>20011218</enddate><creator>Sproul, Andrew A.</creator><creator>Linda T. M. Lambourne</creator><creator>Jims Jean-Jacques D</creator><creator>Kornberg, Hans L.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20011218</creationdate><title>Genetic Control of Manno(fructo)kinase Activity in Escherichia coli</title><author>Sproul, Andrew A. ; Linda T. M. Lambourne ; Jims Jean-Jacques D ; Kornberg, Hans L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-a8cd57517d45451621b5b55de33347a6a8bbb383683f585f1c42e4d8e293f9b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological Sciences</topic><topic>Biology</topic><topic>Cell growth</topic><topic>Chromosome Mapping</topic><topic>Codons</topic><topic>Disease</topic><topic>DNA</topic><topic>Enzyme activity</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Fructokinases - metabolism</topic><topic>Genetic Linkage</topic><topic>Genetic mapping</topic><topic>Genetic mutation</topic><topic>Genetics</topic><topic>Genome, Bacterial</topic><topic>mak gene</topic><topic>manno(fructo)kinase</topic><topic>Mutation</topic><topic>Plasmids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sproul, Andrew A.</creatorcontrib><creatorcontrib>Linda T. M. Lambourne</creatorcontrib><creatorcontrib>Jims Jean-Jacques D</creatorcontrib><creatorcontrib>Kornberg, Hans L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sproul, Andrew A.</au><au>Linda T. M. Lambourne</au><au>Jims Jean-Jacques D</au><au>Kornberg, Hans L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Control of Manno(fructo)kinase Activity in Escherichia coli</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-12-18</date><risdate>2001</risdate><volume>98</volume><issue>26</issue><spage>15257</spage><epage>15259</epage><pages>15257-15259</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mutants of Escherichia coli unable to use fructose by means of the phosphoenolpyruvate/glycose phosphotransferase system mutate further to permit growth on that ketose by derepression of a manno(fructo)kinase (Mak+phenotype) present in only trace amounts in the parent organisms (Mak-o phenotype). The mak gene was located at min 8.8 on the E. coli linkage map as an ORF designated yajF, of hitherto unknown function; it specifies a deduced polypeptide of 344 aa. The derepression of Mak activity was associated with a single base change at position 71 (codon 24) of the gene, where GCC (alanine) in Mak-o has been changed to GAC (aspartate) in Mak+. By cloning selected portions of the total 1,032-bp mak gene into a plasmid that also carried a temperature-sensitive promoter, we showed that the mutation resided in a 117-bp region that does not specify sequences necessary for Mak activity but was located 46 bp upstream of a 915-bp portion that does. Mak+and Mak-o strains differ greatly in the heat stability of the enzyme: at 61°C, mak-o cloned into a mak-o recipient loses 50% of its activity in approximately 6 min, whereas it takes over 30 min to achieve a similar reduction in the activity of mak+cloned into a mak-o strain. However, the Mak activity of the cloned fragment specifying the enzyme without the regulatory region lost activity with a half-life of 29 min irrespective of whether it was derived from a mak+or a mak-o donor, which indicates that the A24D mutation contributes to the high enzyme activity of Mak+mutants by serving to protect Mak from denaturation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11742072</pmid><doi>10.1073/pnas.211569798</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2001-12, Vol.98 (26), p.15257-15259
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_3057443
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Biology
Cell growth
Chromosome Mapping
Codons
Disease
DNA
Enzyme activity
Enzyme Stability
Enzymes
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Fructokinases - metabolism
Genetic Linkage
Genetic mapping
Genetic mutation
Genetics
Genome, Bacterial
mak gene
manno(fructo)kinase
Mutation
Plasmids
title Genetic Control of Manno(fructo)kinase Activity in Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Control%20of%20Manno(fructo)kinase%20Activity%20in%20Escherichia%20coli&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sproul,%20Andrew%20A.&rft.date=2001-12-18&rft.volume=98&rft.issue=26&rft.spage=15257&rft.epage=15259&rft.pages=15257-15259&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.211569798&rft_dat=%3Cjstor_proqu%3E3057443%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201373613&rft_id=info:pmid/11742072&rft_jstor_id=3057443&rfr_iscdi=true