Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation

Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2001-03, Vol.98 (6), p.3571-3576
Hauptverfasser: Fuchs, Elke C., Doheny, Helen, Faulkner, Howard, Caputi, Antonio, Traub, Roger D., Bibbig, Andrea, Kopell, Nancy, Whittington, Miles A., Monyer, Hannah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3576
container_issue 6
container_start_page 3571
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 98
creator Fuchs, Elke C.
Doheny, Helen
Faulkner, Howard
Caputi, Antonio
Traub, Roger D.
Bibbig, Andrea
Kopell, Nancy
Whittington, Miles A.
Monyer, Hannah
description Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.
doi_str_mv 10.1073/pnas.051631898
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_3055276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3055276</jstor_id><sourcerecordid>3055276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-cfc07b4a4c7735f6ec039aea13124fd4aba4815672a201f1f44111f30650a3ee3</originalsourceid><addsrcrecordid>eNqFkkFvEzEQhVcIRNPClRMgqwduG-y1vV5LXKICoSKoqJSz5TizqaNde7G9iIg_j0NCKAiJkw_ve6N5flMUTwieEizoy8HpOMWc1JQ0srlXTAiWpKyZxPeLCcaVKBtWsZPiNMYNxljyBj8sTgipWEOInBTf5-AgWaO7botmXYIAKzT78HFW3mwHQPNuTLrXCdA1GBiSD-i9_WmIyDp06bLBwRi8i-i1jWEcElp4ty6vtVsD-rR15jaLW-RbNNd9r9FVNLbrdLLePSoetLqL8PjwnhWf3765uXhXLq7mlxezRWl4U6XStAaLJdPMCEF5W4PBVGrQhOYU7Yrppc5heC0qXWHSkpYxQkhLcc2xpgD0rHi1nzuMyx5WBlwKulNDsL0OW-W1VX8qzt6qtf-q8gjJsv3FwR78lxFiUr2NBnIIB36MStRSVKSW_wWJ2K1Z4Qye_wVu_Bhc_gOVE9CG1w3P0HQPmeBjDNAeFyZY7bpXu-7VsftseH435m_8UHYGnh2AnfGXLBtVK8oFubP_P3XVjl0-kG8pg0_34CbmiziSFHNeiZr-APIwzSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201385685</pqid></control><display><type>article</type><title>Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fuchs, Elke C. ; Doheny, Helen ; Faulkner, Howard ; Caputi, Antonio ; Traub, Roger D. ; Bibbig, Andrea ; Kopell, Nancy ; Whittington, Miles A. ; Monyer, Hannah</creator><creatorcontrib>Fuchs, Elke C. ; Doheny, Helen ; Faulkner, Howard ; Caputi, Antonio ; Traub, Roger D. ; Bibbig, Andrea ; Kopell, Nancy ; Whittington, Miles A. ; Monyer, Hannah</creatorcontrib><description>Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.051631898</identifier><identifier>PMID: 11248119</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Animals ; Autocorrelation ; Biological Sciences ; Electrophysiology ; excitatory postsynaptic potentials ; Excitatory Postsynaptic Potentials - physiology ; Female ; gamma-Aminobutyric Acid - metabolism ; Gene Expression ; Genetics ; Hippocampus - pathology ; Hippocampus - physiology ; Interneurons ; Interneurons - physiology ; Kinetics ; Long-Term Potentiation - physiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Modeling ; Musical intervals ; Neurology ; Neurons ; Neuroscience ; Pyramidal cells ; Receptors, AMPA - genetics ; Receptors, AMPA - physiology ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - physiology ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-03, Vol.98 (6), p.3571-3576</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 13, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-cfc07b4a4c7735f6ec039aea13124fd4aba4815672a201f1f44111f30650a3ee3</citedby><cites>FETCH-LOGICAL-c582t-cfc07b4a4c7735f6ec039aea13124fd4aba4815672a201f1f44111f30650a3ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3055276$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3055276$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11248119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuchs, Elke C.</creatorcontrib><creatorcontrib>Doheny, Helen</creatorcontrib><creatorcontrib>Faulkner, Howard</creatorcontrib><creatorcontrib>Caputi, Antonio</creatorcontrib><creatorcontrib>Traub, Roger D.</creatorcontrib><creatorcontrib>Bibbig, Andrea</creatorcontrib><creatorcontrib>Kopell, Nancy</creatorcontrib><creatorcontrib>Whittington, Miles A.</creatorcontrib><creatorcontrib>Monyer, Hannah</creatorcontrib><title>Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.</description><subject>Alleles</subject><subject>Animals</subject><subject>Autocorrelation</subject><subject>Biological Sciences</subject><subject>Electrophysiology</subject><subject>excitatory postsynaptic potentials</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Female</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Gene Expression</subject><subject>Genetics</subject><subject>Hippocampus - pathology</subject><subject>Hippocampus - physiology</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Kinetics</subject><subject>Long-Term Potentiation - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Modeling</subject><subject>Musical intervals</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Pyramidal cells</subject><subject>Receptors, AMPA - genetics</subject><subject>Receptors, AMPA - physiology</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFvEzEQhVcIRNPClRMgqwduG-y1vV5LXKICoSKoqJSz5TizqaNde7G9iIg_j0NCKAiJkw_ve6N5flMUTwieEizoy8HpOMWc1JQ0srlXTAiWpKyZxPeLCcaVKBtWsZPiNMYNxljyBj8sTgipWEOInBTf5-AgWaO7botmXYIAKzT78HFW3mwHQPNuTLrXCdA1GBiSD-i9_WmIyDp06bLBwRi8i-i1jWEcElp4ty6vtVsD-rR15jaLW-RbNNd9r9FVNLbrdLLePSoetLqL8PjwnhWf3765uXhXLq7mlxezRWl4U6XStAaLJdPMCEF5W4PBVGrQhOYU7Yrppc5heC0qXWHSkpYxQkhLcc2xpgD0rHi1nzuMyx5WBlwKulNDsL0OW-W1VX8qzt6qtf-q8gjJsv3FwR78lxFiUr2NBnIIB36MStRSVKSW_wWJ2K1Z4Qye_wVu_Bhc_gOVE9CG1w3P0HQPmeBjDNAeFyZY7bpXu-7VsftseH435m_8UHYGnh2AnfGXLBtVK8oFubP_P3XVjl0-kG8pg0_34CbmiziSFHNeiZr-APIwzSQ</recordid><startdate>20010313</startdate><enddate>20010313</enddate><creator>Fuchs, Elke C.</creator><creator>Doheny, Helen</creator><creator>Faulkner, Howard</creator><creator>Caputi, Antonio</creator><creator>Traub, Roger D.</creator><creator>Bibbig, Andrea</creator><creator>Kopell, Nancy</creator><creator>Whittington, Miles A.</creator><creator>Monyer, Hannah</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010313</creationdate><title>Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation</title><author>Fuchs, Elke C. ; Doheny, Helen ; Faulkner, Howard ; Caputi, Antonio ; Traub, Roger D. ; Bibbig, Andrea ; Kopell, Nancy ; Whittington, Miles A. ; Monyer, Hannah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-cfc07b4a4c7735f6ec039aea13124fd4aba4815672a201f1f44111f30650a3ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Autocorrelation</topic><topic>Biological Sciences</topic><topic>Electrophysiology</topic><topic>excitatory postsynaptic potentials</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Female</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Gene Expression</topic><topic>Genetics</topic><topic>Hippocampus - pathology</topic><topic>Hippocampus - physiology</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Kinetics</topic><topic>Long-Term Potentiation - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Modeling</topic><topic>Musical intervals</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Pyramidal cells</topic><topic>Receptors, AMPA - genetics</topic><topic>Receptors, AMPA - physiology</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Elke C.</creatorcontrib><creatorcontrib>Doheny, Helen</creatorcontrib><creatorcontrib>Faulkner, Howard</creatorcontrib><creatorcontrib>Caputi, Antonio</creatorcontrib><creatorcontrib>Traub, Roger D.</creatorcontrib><creatorcontrib>Bibbig, Andrea</creatorcontrib><creatorcontrib>Kopell, Nancy</creatorcontrib><creatorcontrib>Whittington, Miles A.</creatorcontrib><creatorcontrib>Monyer, Hannah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchs, Elke C.</au><au>Doheny, Helen</au><au>Faulkner, Howard</au><au>Caputi, Antonio</au><au>Traub, Roger D.</au><au>Bibbig, Andrea</au><au>Kopell, Nancy</au><au>Whittington, Miles A.</au><au>Monyer, Hannah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-03-13</date><risdate>2001</risdate><volume>98</volume><issue>6</issue><spage>3571</spage><epage>3576</epage><pages>3571-3576</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11248119</pmid><doi>10.1073/pnas.051631898</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2001-03, Vol.98 (6), p.3571-3576
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_3055276
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Animals
Autocorrelation
Biological Sciences
Electrophysiology
excitatory postsynaptic potentials
Excitatory Postsynaptic Potentials - physiology
Female
gamma-Aminobutyric Acid - metabolism
Gene Expression
Genetics
Hippocampus - pathology
Hippocampus - physiology
Interneurons
Interneurons - physiology
Kinetics
Long-Term Potentiation - physiology
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Modeling
Musical intervals
Neurology
Neurons
Neuroscience
Pyramidal cells
Receptors, AMPA - genetics
Receptors, AMPA - physiology
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - physiology
Time Factors
title Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20Altered%20AMPA-Type%20Glutamate%20Receptor%20Kinetics%20in%20Interneurons%20Disrupt%20Long-Range%20Synchrony%20of%20Gamma%20Oscillation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fuchs,%20Elke%20C.&rft.date=2001-03-13&rft.volume=98&rft.issue=6&rft.spage=3571&rft.epage=3576&rft.pages=3571-3576&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.051631898&rft_dat=%3Cjstor_proqu%3E3055276%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201385685&rft_id=info:pmid/11248119&rft_jstor_id=3055276&rfr_iscdi=true