Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation
Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneur...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2001-03, Vol.98 (6), p.3571-3576 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3576 |
---|---|
container_issue | 6 |
container_start_page | 3571 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 98 |
creator | Fuchs, Elke C. Doheny, Helen Faulkner, Howard Caputi, Antonio Traub, Roger D. Bibbig, Andrea Kopell, Nancy Whittington, Miles A. Monyer, Hannah |
description | Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance. |
doi_str_mv | 10.1073/pnas.051631898 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_3055276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3055276</jstor_id><sourcerecordid>3055276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-cfc07b4a4c7735f6ec039aea13124fd4aba4815672a201f1f44111f30650a3ee3</originalsourceid><addsrcrecordid>eNqFkkFvEzEQhVcIRNPClRMgqwduG-y1vV5LXKICoSKoqJSz5TizqaNde7G9iIg_j0NCKAiJkw_ve6N5flMUTwieEizoy8HpOMWc1JQ0srlXTAiWpKyZxPeLCcaVKBtWsZPiNMYNxljyBj8sTgipWEOInBTf5-AgWaO7botmXYIAKzT78HFW3mwHQPNuTLrXCdA1GBiSD-i9_WmIyDp06bLBwRi8i-i1jWEcElp4ty6vtVsD-rR15jaLW-RbNNd9r9FVNLbrdLLePSoetLqL8PjwnhWf3765uXhXLq7mlxezRWl4U6XStAaLJdPMCEF5W4PBVGrQhOYU7Yrppc5heC0qXWHSkpYxQkhLcc2xpgD0rHi1nzuMyx5WBlwKulNDsL0OW-W1VX8qzt6qtf-q8gjJsv3FwR78lxFiUr2NBnIIB36MStRSVKSW_wWJ2K1Z4Qye_wVu_Bhc_gOVE9CG1w3P0HQPmeBjDNAeFyZY7bpXu-7VsftseH435m_8UHYGnh2AnfGXLBtVK8oFubP_P3XVjl0-kG8pg0_34CbmiziSFHNeiZr-APIwzSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201385685</pqid></control><display><type>article</type><title>Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fuchs, Elke C. ; Doheny, Helen ; Faulkner, Howard ; Caputi, Antonio ; Traub, Roger D. ; Bibbig, Andrea ; Kopell, Nancy ; Whittington, Miles A. ; Monyer, Hannah</creator><creatorcontrib>Fuchs, Elke C. ; Doheny, Helen ; Faulkner, Howard ; Caputi, Antonio ; Traub, Roger D. ; Bibbig, Andrea ; Kopell, Nancy ; Whittington, Miles A. ; Monyer, Hannah</creatorcontrib><description>Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.051631898</identifier><identifier>PMID: 11248119</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Animals ; Autocorrelation ; Biological Sciences ; Electrophysiology ; excitatory postsynaptic potentials ; Excitatory Postsynaptic Potentials - physiology ; Female ; gamma-Aminobutyric Acid - metabolism ; Gene Expression ; Genetics ; Hippocampus - pathology ; Hippocampus - physiology ; Interneurons ; Interneurons - physiology ; Kinetics ; Long-Term Potentiation - physiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Modeling ; Musical intervals ; Neurology ; Neurons ; Neuroscience ; Pyramidal cells ; Receptors, AMPA - genetics ; Receptors, AMPA - physiology ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - physiology ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-03, Vol.98 (6), p.3571-3576</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 13, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-cfc07b4a4c7735f6ec039aea13124fd4aba4815672a201f1f44111f30650a3ee3</citedby><cites>FETCH-LOGICAL-c582t-cfc07b4a4c7735f6ec039aea13124fd4aba4815672a201f1f44111f30650a3ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3055276$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3055276$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11248119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuchs, Elke C.</creatorcontrib><creatorcontrib>Doheny, Helen</creatorcontrib><creatorcontrib>Faulkner, Howard</creatorcontrib><creatorcontrib>Caputi, Antonio</creatorcontrib><creatorcontrib>Traub, Roger D.</creatorcontrib><creatorcontrib>Bibbig, Andrea</creatorcontrib><creatorcontrib>Kopell, Nancy</creatorcontrib><creatorcontrib>Whittington, Miles A.</creatorcontrib><creatorcontrib>Monyer, Hannah</creatorcontrib><title>Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.</description><subject>Alleles</subject><subject>Animals</subject><subject>Autocorrelation</subject><subject>Biological Sciences</subject><subject>Electrophysiology</subject><subject>excitatory postsynaptic potentials</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Female</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Gene Expression</subject><subject>Genetics</subject><subject>Hippocampus - pathology</subject><subject>Hippocampus - physiology</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Kinetics</subject><subject>Long-Term Potentiation - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Modeling</subject><subject>Musical intervals</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Pyramidal cells</subject><subject>Receptors, AMPA - genetics</subject><subject>Receptors, AMPA - physiology</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFvEzEQhVcIRNPClRMgqwduG-y1vV5LXKICoSKoqJSz5TizqaNde7G9iIg_j0NCKAiJkw_ve6N5flMUTwieEizoy8HpOMWc1JQ0srlXTAiWpKyZxPeLCcaVKBtWsZPiNMYNxljyBj8sTgipWEOInBTf5-AgWaO7botmXYIAKzT78HFW3mwHQPNuTLrXCdA1GBiSD-i9_WmIyDp06bLBwRi8i-i1jWEcElp4ty6vtVsD-rR15jaLW-RbNNd9r9FVNLbrdLLePSoetLqL8PjwnhWf3765uXhXLq7mlxezRWl4U6XStAaLJdPMCEF5W4PBVGrQhOYU7Yrppc5heC0qXWHSkpYxQkhLcc2xpgD0rHi1nzuMyx5WBlwKulNDsL0OW-W1VX8qzt6qtf-q8gjJsv3FwR78lxFiUr2NBnIIB36MStRSVKSW_wWJ2K1Z4Qye_wVu_Bhc_gOVE9CG1w3P0HQPmeBjDNAeFyZY7bpXu-7VsftseH435m_8UHYGnh2AnfGXLBtVK8oFubP_P3XVjl0-kG8pg0_34CbmiziSFHNeiZr-APIwzSQ</recordid><startdate>20010313</startdate><enddate>20010313</enddate><creator>Fuchs, Elke C.</creator><creator>Doheny, Helen</creator><creator>Faulkner, Howard</creator><creator>Caputi, Antonio</creator><creator>Traub, Roger D.</creator><creator>Bibbig, Andrea</creator><creator>Kopell, Nancy</creator><creator>Whittington, Miles A.</creator><creator>Monyer, Hannah</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010313</creationdate><title>Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation</title><author>Fuchs, Elke C. ; Doheny, Helen ; Faulkner, Howard ; Caputi, Antonio ; Traub, Roger D. ; Bibbig, Andrea ; Kopell, Nancy ; Whittington, Miles A. ; Monyer, Hannah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-cfc07b4a4c7735f6ec039aea13124fd4aba4815672a201f1f44111f30650a3ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Autocorrelation</topic><topic>Biological Sciences</topic><topic>Electrophysiology</topic><topic>excitatory postsynaptic potentials</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Female</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Gene Expression</topic><topic>Genetics</topic><topic>Hippocampus - pathology</topic><topic>Hippocampus - physiology</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Kinetics</topic><topic>Long-Term Potentiation - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Modeling</topic><topic>Musical intervals</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Pyramidal cells</topic><topic>Receptors, AMPA - genetics</topic><topic>Receptors, AMPA - physiology</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Elke C.</creatorcontrib><creatorcontrib>Doheny, Helen</creatorcontrib><creatorcontrib>Faulkner, Howard</creatorcontrib><creatorcontrib>Caputi, Antonio</creatorcontrib><creatorcontrib>Traub, Roger D.</creatorcontrib><creatorcontrib>Bibbig, Andrea</creatorcontrib><creatorcontrib>Kopell, Nancy</creatorcontrib><creatorcontrib>Whittington, Miles A.</creatorcontrib><creatorcontrib>Monyer, Hannah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchs, Elke C.</au><au>Doheny, Helen</au><au>Faulkner, Howard</au><au>Caputi, Antonio</au><au>Traub, Roger D.</au><au>Bibbig, Andrea</au><au>Kopell, Nancy</au><au>Whittington, Miles A.</au><au>Monyer, Hannah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-03-13</date><risdate>2001</risdate><volume>98</volume><issue>6</issue><spage>3571</spage><epage>3576</epage><pages>3571-3576</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11248119</pmid><doi>10.1073/pnas.051631898</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2001-03, Vol.98 (6), p.3571-3576 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_3055276 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alleles Animals Autocorrelation Biological Sciences Electrophysiology excitatory postsynaptic potentials Excitatory Postsynaptic Potentials - physiology Female gamma-Aminobutyric Acid - metabolism Gene Expression Genetics Hippocampus - pathology Hippocampus - physiology Interneurons Interneurons - physiology Kinetics Long-Term Potentiation - physiology Male Mice Mice, Inbred C57BL Mice, Transgenic Modeling Musical intervals Neurology Neurons Neuroscience Pyramidal cells Receptors, AMPA - genetics Receptors, AMPA - physiology Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - physiology Time Factors |
title | Genetically Altered AMPA-Type Glutamate Receptor Kinetics in Interneurons Disrupt Long-Range Synchrony of Gamma Oscillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20Altered%20AMPA-Type%20Glutamate%20Receptor%20Kinetics%20in%20Interneurons%20Disrupt%20Long-Range%20Synchrony%20of%20Gamma%20Oscillation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fuchs,%20Elke%20C.&rft.date=2001-03-13&rft.volume=98&rft.issue=6&rft.spage=3571&rft.epage=3576&rft.pages=3571-3576&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.051631898&rft_dat=%3Cjstor_proqu%3E3055276%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201385685&rft_id=info:pmid/11248119&rft_jstor_id=3055276&rfr_iscdi=true |