Oxygen Uptake and Local Po 2Profiles in Submerged Larvae ofPhaeoxantha klugii(Coleoptera: Cicindelidae), as Well as Their Metabolic Rate in Air
We studied whether oxygen uptake from the surrounding water might enhance survival in submerged third instar larvae ofPhaeoxantha klugii, a tiger beetle from the central Amazonian floodplains. Local oxygen partial pressures (Po 2) were measured with microcoaxial needle electrodes close to larvae sub...
Gespeichert in:
Veröffentlicht in: | Physiological and biochemical zoology 2004-05, Vol.77 (3), p.378-389 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 389 |
---|---|
container_issue | 3 |
container_start_page | 378 |
container_title | Physiological and biochemical zoology |
container_volume | 77 |
creator | Zerm, M. Zinkler, D. Adis, J. |
description | We studied whether oxygen uptake from the surrounding water might enhance survival in submerged third instar larvae ofPhaeoxantha klugii, a tiger beetle from the central Amazonian floodplains. Local oxygen partial pressures (Po
2) were measured with microcoaxial needle electrodes close to larvae submerged in initially air‐saturated still water. The Po
2profiles showed that the larvae exploit oxygen from the aquatic medium. Metabolism in the air of more or less resting larvae was determined by measuring the rate of CO2production (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$co$}_{2}$ \end{document}
) with an infrared gas analyzer at 29°C. The
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$co$}_{2}$ \end{document}
was around 1.8 μL g−1min−1, equivalent to an oxygen consumption rate (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
) of 1.8–2.6 μL g−1min−1. Oxygen consumption (
\documentclass |
doi_str_mv | 10.1086/383504 |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_30163960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/383504</jstor_id><sourcerecordid>10.1086/383504</sourcerecordid><originalsourceid>FETCH-jstor_primary_301639603</originalsourceid><addsrcrecordid>eNqFjc1Kw0AURgdRsP69gXCXCkZnMiYm7iQoLhSDVlyW2-Qmue00E2am0j6Fr2wD7t1854OzOEKcKXmtZJbe6Ewn8nZPTFSi76IkzvX--OM4ind7KI68X0ipVCbzifh522xb6uFzCLgkwL6GF1uhgdJCXDrbsCEP3MPHer4i19LOo_tGAtuUHZLdYB86hKVZt8wXhTVkh0AO76HgivuaDNdIl1eAHr7ImJHTjtjBKwWcW8MVvGOgsfHA7kQcNGg8nf7xWJw_PU6L52jhg3WzwfEK3XampUp1nkr9n_8FiOFUAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxygen Uptake and Local Po 2Profiles in Submerged Larvae ofPhaeoxantha klugii(Coleoptera: Cicindelidae), as Well as Their Metabolic Rate in Air</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Zerm, M. ; Zinkler, D. ; Adis, J.</creator><creatorcontrib>Zerm, M. ; Zinkler, D. ; Adis, J.</creatorcontrib><description>We studied whether oxygen uptake from the surrounding water might enhance survival in submerged third instar larvae ofPhaeoxantha klugii, a tiger beetle from the central Amazonian floodplains. Local oxygen partial pressures (Po
2) were measured with microcoaxial needle electrodes close to larvae submerged in initially air‐saturated still water. The Po
2profiles showed that the larvae exploit oxygen from the aquatic medium. Metabolism in the air of more or less resting larvae was determined by measuring the rate of CO2production (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$co$}_{2}$ \end{document}
) with an infrared gas analyzer at 29°C. The
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$co$}_{2}$ \end{document}
was around 1.8 μL g−1min−1, equivalent to an oxygen consumption rate (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
) of 1.8–2.6 μL g−1min−1. Oxygen consumption (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
) of individually submerged larvae measured in closed respiration chambers at 19–10.3 kPa Po
2(initially air saturated, 29°C) ranged between 0.05 and 0.2 μL min−1and was not correlated with body mass. The
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
ranged between 0.1 and 0.4 μL min−1, that is, 4%–22% of the metabolic rate measured in air. Mean
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
decreased with declining Po
2; however, some individuals showed contrary patterns.
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
was additionally measured in dormant larvae, in larvae submerged for 1–2 d in open water or for 30–49 d within sediment, as well as in larvae exposed to anoxia before the measurements. The range of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
was similar in all groups, indicating that the larvae exploit oxygen from the water whenever available. Similar
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
across the whole range of body mass investigated (0.31–0.76 g) suggests that oxygen uptake occurs by spiracular uptake. Assuming that larvae survive for some time at rates comparable to depressed metabolic rates reported for other insect species, it can be concluded that oxygen uptake from water can sustain aerobic metabolism even under quite severe hypoxia. It might therefore play an important role for survival during inundation periods.</description><identifier>ISSN: 1522-2152</identifier><identifier>EISSN: 1537-5293</identifier><identifier>DOI: 10.1086/383504</identifier><language>eng</language><publisher>The University of Chicago Press</publisher><subject>Animal physiology ; Average linear density ; Beetles ; Insect larvae ; Larvae ; Metabolism ; Oxygen ; Oxygen consumption ; Oxygen metabolism ; Spiracles</subject><ispartof>Physiological and biochemical zoology, 2004-05, Vol.77 (3), p.378-389</ispartof><rights>2004 by The University of Chicago. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,803,27915,27916</link.rule.ids></links><search><creatorcontrib>Zerm, M.</creatorcontrib><creatorcontrib>Zinkler, D.</creatorcontrib><creatorcontrib>Adis, J.</creatorcontrib><title>Oxygen Uptake and Local Po 2Profiles in Submerged Larvae ofPhaeoxantha klugii(Coleoptera: Cicindelidae), as Well as Their Metabolic Rate in Air</title><title>Physiological and biochemical zoology</title><description>We studied whether oxygen uptake from the surrounding water might enhance survival in submerged third instar larvae ofPhaeoxantha klugii, a tiger beetle from the central Amazonian floodplains. Local oxygen partial pressures (Po
2) were measured with microcoaxial needle electrodes close to larvae submerged in initially air‐saturated still water. The Po
2profiles showed that the larvae exploit oxygen from the aquatic medium. Metabolism in the air of more or less resting larvae was determined by measuring the rate of CO2production (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$co$}_{2}$ \end{document}
) with an infrared gas analyzer at 29°C. The
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$co$}_{2}$ \end{document}
was around 1.8 μL g−1min−1, equivalent to an oxygen consumption rate (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
) of 1.8–2.6 μL g−1min−1. Oxygen consumption (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
) of individually submerged larvae measured in closed respiration chambers at 19–10.3 kPa Po
2(initially air saturated, 29°C) ranged between 0.05 and 0.2 μL min−1and was not correlated with body mass. The
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
ranged between 0.1 and 0.4 μL min−1, that is, 4%–22% of the metabolic rate measured in air. Mean
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
decreased with declining Po
2; however, some individuals showed contrary patterns.
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
was additionally measured in dormant larvae, in larvae submerged for 1–2 d in open water or for 30–49 d within sediment, as well as in larvae exposed to anoxia before the measurements. The range of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
was similar in all groups, indicating that the larvae exploit oxygen from the water whenever available. Similar
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
across the whole range of body mass investigated (0.31–0.76 g) suggests that oxygen uptake occurs by spiracular uptake. Assuming that larvae survive for some time at rates comparable to depressed metabolic rates reported for other insect species, it can be concluded that oxygen uptake from water can sustain aerobic metabolism even under quite severe hypoxia. It might therefore play an important role for survival during inundation periods.</description><subject>Animal physiology</subject><subject>Average linear density</subject><subject>Beetles</subject><subject>Insect larvae</subject><subject>Larvae</subject><subject>Metabolism</subject><subject>Oxygen</subject><subject>Oxygen consumption</subject><subject>Oxygen metabolism</subject><subject>Spiracles</subject><issn>1522-2152</issn><issn>1537-5293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjc1Kw0AURgdRsP69gXCXCkZnMiYm7iQoLhSDVlyW2-Qmue00E2am0j6Fr2wD7t1854OzOEKcKXmtZJbe6Ewn8nZPTFSi76IkzvX--OM4ind7KI68X0ipVCbzifh522xb6uFzCLgkwL6GF1uhgdJCXDrbsCEP3MPHer4i19LOo_tGAtuUHZLdYB86hKVZt8wXhTVkh0AO76HgivuaDNdIl1eAHr7ImJHTjtjBKwWcW8MVvGOgsfHA7kQcNGg8nf7xWJw_PU6L52jhg3WzwfEK3XampUp1nkr9n_8FiOFUAg</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>Zerm, M.</creator><creator>Zinkler, D.</creator><creator>Adis, J.</creator><general>The University of Chicago Press</general><scope/></search><sort><creationdate>200405</creationdate><title>Oxygen Uptake and Local Po 2Profiles in Submerged Larvae ofPhaeoxantha klugii(Coleoptera: Cicindelidae), as Well as Their Metabolic Rate in Air</title><author>Zerm, M. ; Zinkler, D. ; Adis, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_301639603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animal physiology</topic><topic>Average linear density</topic><topic>Beetles</topic><topic>Insect larvae</topic><topic>Larvae</topic><topic>Metabolism</topic><topic>Oxygen</topic><topic>Oxygen consumption</topic><topic>Oxygen metabolism</topic><topic>Spiracles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zerm, M.</creatorcontrib><creatorcontrib>Zinkler, D.</creatorcontrib><creatorcontrib>Adis, J.</creatorcontrib><jtitle>Physiological and biochemical zoology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zerm, M.</au><au>Zinkler, D.</au><au>Adis, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Uptake and Local Po 2Profiles in Submerged Larvae ofPhaeoxantha klugii(Coleoptera: Cicindelidae), as Well as Their Metabolic Rate in Air</atitle><jtitle>Physiological and biochemical zoology</jtitle><date>2004-05</date><risdate>2004</risdate><volume>77</volume><issue>3</issue><spage>378</spage><epage>389</epage><pages>378-389</pages><issn>1522-2152</issn><eissn>1537-5293</eissn><abstract>We studied whether oxygen uptake from the surrounding water might enhance survival in submerged third instar larvae ofPhaeoxantha klugii, a tiger beetle from the central Amazonian floodplains. Local oxygen partial pressures (Po
2) were measured with microcoaxial needle electrodes close to larvae submerged in initially air‐saturated still water. The Po
2profiles showed that the larvae exploit oxygen from the aquatic medium. Metabolism in the air of more or less resting larvae was determined by measuring the rate of CO2production (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$co$}_{2}$ \end{document}
) with an infrared gas analyzer at 29°C. The
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$co$}_{2}$ \end{document}
was around 1.8 μL g−1min−1, equivalent to an oxygen consumption rate (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
) of 1.8–2.6 μL g−1min−1. Oxygen consumption (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
) of individually submerged larvae measured in closed respiration chambers at 19–10.3 kPa Po
2(initially air saturated, 29°C) ranged between 0.05 and 0.2 μL min−1and was not correlated with body mass. The
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{s}\,\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
ranged between 0.1 and 0.4 μL min−1, that is, 4%–22% of the metabolic rate measured in air. Mean
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
decreased with declining Po
2; however, some individuals showed contrary patterns.
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
was additionally measured in dormant larvae, in larvae submerged for 1–2 d in open water or for 30–49 d within sediment, as well as in larvae exposed to anoxia before the measurements. The range of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
was similar in all groups, indicating that the larvae exploit oxygen from the water whenever available. Similar
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\dot{\mathrm{V}}\textsc{$o$}_{2}$ \end{document}
across the whole range of body mass investigated (0.31–0.76 g) suggests that oxygen uptake occurs by spiracular uptake. Assuming that larvae survive for some time at rates comparable to depressed metabolic rates reported for other insect species, it can be concluded that oxygen uptake from water can sustain aerobic metabolism even under quite severe hypoxia. It might therefore play an important role for survival during inundation periods.</abstract><pub>The University of Chicago Press</pub><doi>10.1086/383504</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1522-2152 |
ispartof | Physiological and biochemical zoology, 2004-05, Vol.77 (3), p.378-389 |
issn | 1522-2152 1537-5293 |
language | eng |
recordid | cdi_jstor_primary_30163960 |
source | JSTOR Archive Collection A-Z Listing |
subjects | Animal physiology Average linear density Beetles Insect larvae Larvae Metabolism Oxygen Oxygen consumption Oxygen metabolism Spiracles |
title | Oxygen Uptake and Local Po 2Profiles in Submerged Larvae ofPhaeoxantha klugii(Coleoptera: Cicindelidae), as Well as Their Metabolic Rate in Air |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Uptake%20and%20Local%20Po%202Profiles%20in%20Submerged%20Larvae%20ofPhaeoxantha%20klugii(Coleoptera:%20Cicindelidae),%20as%20Well%20as%20Their%20Metabolic%20Rate%20in%20Air&rft.jtitle=Physiological%20and%20biochemical%20zoology&rft.au=Zerm,%20M.&rft.date=2004-05&rft.volume=77&rft.issue=3&rft.spage=378&rft.epage=389&rft.pages=378-389&rft.issn=1522-2152&rft.eissn=1537-5293&rft_id=info:doi/10.1086/383504&rft_dat=%3Cjstor%3E10.1086/383504%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=10.1086/383504&rfr_iscdi=true |