Analysis of Retrotransposon Structural Diversity Uncovers Properties and Propensities in Angiosperm Genome Evolution

Analysis of LTR retrotransposon structures in five diploid angiosperm genomes uncovered very different relative levels of different types of genomic diversity. All species exhibited recent LTR retrotransposon mobility and also high rates of DNA removal by unequal homologous recombination and illegit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-11, Vol.103 (47), p.17638-17643
Hauptverfasser: Vitte, Clémentine, Bennetzen, Jeffrey L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17643
container_issue 47
container_start_page 17638
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Vitte, Clémentine
Bennetzen, Jeffrey L.
description Analysis of LTR retrotransposon structures in five diploid angiosperm genomes uncovered very different relative levels of different types of genomic diversity. All species exhibited recent LTR retrotransposon mobility and also high rates of DNA removal by unequal homologous recombination and illegitimate recombination. The larger plant genomes contained many LTR retrotransposon families with >10,000 copies per haploid genome, whereas the smaller genomes contained few or no LTR retrotransposon families with >1,000 copies, suggesting that this differential potential for retroelement amplification is a primary factor in angiosperm genome size variation. The average ratios of transition to transversion mutations (Ts/Tv) in diverging LTRs were >1.5 for each species studied, suggesting that these elements are mostly 5-methylated at cytosines in an epigenetically silenced state. However, the diploid wheat Triticum monococcum and barley have unusually low Ts/Tv values (respectively, 1.9 and 1.6) compared with maize (3.9), medicago (3.6), and lotus (2.5), suggesting that this silencing is less complete in the two Triticeae. Such characteristics as the ratios of point mutations to indels (insertions and deletions) and the relative efficiencies of DNA removal by unequal homologous recombination compared with illegitimate recombination were highly variable between species. These latter variations did not correlate with genome size or phylogenetic relatedness, indicating that they frequently change during the evolutionary descent of plant lineages. In sum, the results indicate that the different sizes, contents, and structures of angiosperm genomes are outcomes of the same suite of mechanistic processes, but acting with different relative efficiencies in different plant lineages.
doi_str_mv 10.1073/pnas.0605618103
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_30052515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30052515</jstor_id><sourcerecordid>30052515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-cd501624285f0127604a8f3e25cd7200df3d67c6c3d6607a49cbc5eadfe3e0f03</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEotvCmRPI4lCJQ9rxZ5IL0qqUFmklENCz5TpO61Vib21nxf57HGXVhUqI09jjZ96xPW9RvMFwhqGi5xun4hkI4ALXGOizYoGhwaVgDTwvFgCkKmtG2FFxHOMaABpew8viCFcYcCPEokhLp_pdtBH5Dn03KfgUlIsbH71DP1IYdRqD6tEnuzUh2rRDN077aY2-Bb8xIVkTkXLtvHUZmRLWoaW7sz5mYkBXxvnBoMut78dkvXtVvOhUH83rfTwpbj5f_ry4Lldfr75cLFelFhRSqVsOWBBGat4BJpUApuqOGsJ1WxGAtqOtqLTQOQioFGv0reZGtZ2hBjqgJ8XHWXcz3g6m1cblx_VyE-ygwk56ZeXfJ87eyzu_lVg0tGqaLPBhFrh_Una9XMkpB4wCrwnf4sye7psF_zCamORgozZ9r5zxY5SiziNigv0XxA0HwGzq_v4JuPZjyPOKkgCmvKE1ydD5DOngYwyme7wnBjl5RE4ekQeP5Ip3f_7Kgd-bIgNoD0yVBzkqWZUpQevDx_wTkd3Y98n8Spl9O7PrmHx4hCkAJxxz-hug_dxj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201359382</pqid></control><display><type>article</type><title>Analysis of Retrotransposon Structural Diversity Uncovers Properties and Propensities in Angiosperm Genome Evolution</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vitte, Clémentine ; Bennetzen, Jeffrey L.</creator><creatorcontrib>Vitte, Clémentine ; Bennetzen, Jeffrey L.</creatorcontrib><description>Analysis of LTR retrotransposon structures in five diploid angiosperm genomes uncovered very different relative levels of different types of genomic diversity. All species exhibited recent LTR retrotransposon mobility and also high rates of DNA removal by unequal homologous recombination and illegitimate recombination. The larger plant genomes contained many LTR retrotransposon families with &gt;10,000 copies per haploid genome, whereas the smaller genomes contained few or no LTR retrotransposon families with &gt;1,000 copies, suggesting that this differential potential for retroelement amplification is a primary factor in angiosperm genome size variation. The average ratios of transition to transversion mutations (Ts/Tv) in diverging LTRs were &gt;1.5 for each species studied, suggesting that these elements are mostly 5-methylated at cytosines in an epigenetically silenced state. However, the diploid wheat Triticum monococcum and barley have unusually low Ts/Tv values (respectively, 1.9 and 1.6) compared with maize (3.9), medicago (3.6), and lotus (2.5), suggesting that this silencing is less complete in the two Triticeae. Such characteristics as the ratios of point mutations to indels (insertions and deletions) and the relative efficiencies of DNA removal by unequal homologous recombination compared with illegitimate recombination were highly variable between species. These latter variations did not correlate with genome size or phylogenetic relatedness, indicating that they frequently change during the evolutionary descent of plant lineages. In sum, the results indicate that the different sizes, contents, and structures of angiosperm genomes are outcomes of the same suite of mechanistic processes, but acting with different relative efficiencies in different plant lineages.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0605618103</identifier><identifier>PMID: 17101966</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Angiosperms ; Animals ; Barley ; Base Sequence ; Biological Sciences ; Corn ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA, Plant - genetics ; DNA, Plant - metabolism ; Eukaryotic Transposable Elements ; Evolution, Molecular ; Flowers &amp; plants ; Genetic diversity ; Genetic recombination ; Genetic Variation ; Genome size ; Genome, Plant ; Genomes ; Genomics ; Hordeum vulgare ; Life Sciences ; Lotus ; Magnoliopsida - genetics ; Medicago ; Molecular Sequence Data ; Mutation ; Plants ; Recombination, Genetic ; Retroelements - genetics ; Retrotransposons ; Rice ; Sequence Analysis, DNA ; Studies ; Terminal Repeat Sequences ; Triticeae ; Triticum aestivum ; Triticum monococcum ; Zea mays</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-11, Vol.103 (47), p.17638-17643</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 21, 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-cd501624285f0127604a8f3e25cd7200df3d67c6c3d6607a49cbc5eadfe3e0f03</citedby><cites>FETCH-LOGICAL-c630t-cd501624285f0127604a8f3e25cd7200df3d67c6c3d6607a49cbc5eadfe3e0f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30052515$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30052515$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17101966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-04305825$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vitte, Clémentine</creatorcontrib><creatorcontrib>Bennetzen, Jeffrey L.</creatorcontrib><title>Analysis of Retrotransposon Structural Diversity Uncovers Properties and Propensities in Angiosperm Genome Evolution</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Analysis of LTR retrotransposon structures in five diploid angiosperm genomes uncovered very different relative levels of different types of genomic diversity. All species exhibited recent LTR retrotransposon mobility and also high rates of DNA removal by unequal homologous recombination and illegitimate recombination. The larger plant genomes contained many LTR retrotransposon families with &gt;10,000 copies per haploid genome, whereas the smaller genomes contained few or no LTR retrotransposon families with &gt;1,000 copies, suggesting that this differential potential for retroelement amplification is a primary factor in angiosperm genome size variation. The average ratios of transition to transversion mutations (Ts/Tv) in diverging LTRs were &gt;1.5 for each species studied, suggesting that these elements are mostly 5-methylated at cytosines in an epigenetically silenced state. However, the diploid wheat Triticum monococcum and barley have unusually low Ts/Tv values (respectively, 1.9 and 1.6) compared with maize (3.9), medicago (3.6), and lotus (2.5), suggesting that this silencing is less complete in the two Triticeae. Such characteristics as the ratios of point mutations to indels (insertions and deletions) and the relative efficiencies of DNA removal by unequal homologous recombination compared with illegitimate recombination were highly variable between species. These latter variations did not correlate with genome size or phylogenetic relatedness, indicating that they frequently change during the evolutionary descent of plant lineages. In sum, the results indicate that the different sizes, contents, and structures of angiosperm genomes are outcomes of the same suite of mechanistic processes, but acting with different relative efficiencies in different plant lineages.</description><subject>Angiosperms</subject><subject>Animals</subject><subject>Barley</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Corn</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Plant - genetics</subject><subject>DNA, Plant - metabolism</subject><subject>Eukaryotic Transposable Elements</subject><subject>Evolution, Molecular</subject><subject>Flowers &amp; plants</subject><subject>Genetic diversity</subject><subject>Genetic recombination</subject><subject>Genetic Variation</subject><subject>Genome size</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hordeum vulgare</subject><subject>Life Sciences</subject><subject>Lotus</subject><subject>Magnoliopsida - genetics</subject><subject>Medicago</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Plants</subject><subject>Recombination, Genetic</subject><subject>Retroelements - genetics</subject><subject>Retrotransposons</subject><subject>Rice</subject><subject>Sequence Analysis, DNA</subject><subject>Studies</subject><subject>Terminal Repeat Sequences</subject><subject>Triticeae</subject><subject>Triticum aestivum</subject><subject>Triticum monococcum</subject><subject>Zea mays</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEotvCmRPI4lCJQ9rxZ5IL0qqUFmklENCz5TpO61Vib21nxf57HGXVhUqI09jjZ96xPW9RvMFwhqGi5xun4hkI4ALXGOizYoGhwaVgDTwvFgCkKmtG2FFxHOMaABpew8viCFcYcCPEokhLp_pdtBH5Dn03KfgUlIsbH71DP1IYdRqD6tEnuzUh2rRDN077aY2-Bb8xIVkTkXLtvHUZmRLWoaW7sz5mYkBXxvnBoMut78dkvXtVvOhUH83rfTwpbj5f_ry4Lldfr75cLFelFhRSqVsOWBBGat4BJpUApuqOGsJ1WxGAtqOtqLTQOQioFGv0reZGtZ2hBjqgJ8XHWXcz3g6m1cblx_VyE-ygwk56ZeXfJ87eyzu_lVg0tGqaLPBhFrh_Una9XMkpB4wCrwnf4sye7psF_zCamORgozZ9r5zxY5SiziNigv0XxA0HwGzq_v4JuPZjyPOKkgCmvKE1ydD5DOngYwyme7wnBjl5RE4ekQeP5Ip3f_7Kgd-bIgNoD0yVBzkqWZUpQevDx_wTkd3Y98n8Spl9O7PrmHx4hCkAJxxz-hug_dxj</recordid><startdate>20061121</startdate><enddate>20061121</enddate><creator>Vitte, Clémentine</creator><creator>Bennetzen, Jeffrey L.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20061121</creationdate><title>Analysis of Retrotransposon Structural Diversity Uncovers Properties and Propensities in Angiosperm Genome Evolution</title><author>Vitte, Clémentine ; Bennetzen, Jeffrey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-cd501624285f0127604a8f3e25cd7200df3d67c6c3d6607a49cbc5eadfe3e0f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Angiosperms</topic><topic>Animals</topic><topic>Barley</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Corn</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Plant - genetics</topic><topic>DNA, Plant - metabolism</topic><topic>Eukaryotic Transposable Elements</topic><topic>Evolution, Molecular</topic><topic>Flowers &amp; plants</topic><topic>Genetic diversity</topic><topic>Genetic recombination</topic><topic>Genetic Variation</topic><topic>Genome size</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hordeum vulgare</topic><topic>Life Sciences</topic><topic>Lotus</topic><topic>Magnoliopsida - genetics</topic><topic>Medicago</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Plants</topic><topic>Recombination, Genetic</topic><topic>Retroelements - genetics</topic><topic>Retrotransposons</topic><topic>Rice</topic><topic>Sequence Analysis, DNA</topic><topic>Studies</topic><topic>Terminal Repeat Sequences</topic><topic>Triticeae</topic><topic>Triticum aestivum</topic><topic>Triticum monococcum</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitte, Clémentine</creatorcontrib><creatorcontrib>Bennetzen, Jeffrey L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitte, Clémentine</au><au>Bennetzen, Jeffrey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Retrotransposon Structural Diversity Uncovers Properties and Propensities in Angiosperm Genome Evolution</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-11-21</date><risdate>2006</risdate><volume>103</volume><issue>47</issue><spage>17638</spage><epage>17643</epage><pages>17638-17643</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Analysis of LTR retrotransposon structures in five diploid angiosperm genomes uncovered very different relative levels of different types of genomic diversity. All species exhibited recent LTR retrotransposon mobility and also high rates of DNA removal by unequal homologous recombination and illegitimate recombination. The larger plant genomes contained many LTR retrotransposon families with &gt;10,000 copies per haploid genome, whereas the smaller genomes contained few or no LTR retrotransposon families with &gt;1,000 copies, suggesting that this differential potential for retroelement amplification is a primary factor in angiosperm genome size variation. The average ratios of transition to transversion mutations (Ts/Tv) in diverging LTRs were &gt;1.5 for each species studied, suggesting that these elements are mostly 5-methylated at cytosines in an epigenetically silenced state. However, the diploid wheat Triticum monococcum and barley have unusually low Ts/Tv values (respectively, 1.9 and 1.6) compared with maize (3.9), medicago (3.6), and lotus (2.5), suggesting that this silencing is less complete in the two Triticeae. Such characteristics as the ratios of point mutations to indels (insertions and deletions) and the relative efficiencies of DNA removal by unequal homologous recombination compared with illegitimate recombination were highly variable between species. These latter variations did not correlate with genome size or phylogenetic relatedness, indicating that they frequently change during the evolutionary descent of plant lineages. In sum, the results indicate that the different sizes, contents, and structures of angiosperm genomes are outcomes of the same suite of mechanistic processes, but acting with different relative efficiencies in different plant lineages.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17101966</pmid><doi>10.1073/pnas.0605618103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-11, Vol.103 (47), p.17638-17643
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_30052515
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Angiosperms
Animals
Barley
Base Sequence
Biological Sciences
Corn
Datasets
Deoxyribonucleic acid
DNA
DNA, Plant - genetics
DNA, Plant - metabolism
Eukaryotic Transposable Elements
Evolution, Molecular
Flowers & plants
Genetic diversity
Genetic recombination
Genetic Variation
Genome size
Genome, Plant
Genomes
Genomics
Hordeum vulgare
Life Sciences
Lotus
Magnoliopsida - genetics
Medicago
Molecular Sequence Data
Mutation
Plants
Recombination, Genetic
Retroelements - genetics
Retrotransposons
Rice
Sequence Analysis, DNA
Studies
Terminal Repeat Sequences
Triticeae
Triticum aestivum
Triticum monococcum
Zea mays
title Analysis of Retrotransposon Structural Diversity Uncovers Properties and Propensities in Angiosperm Genome Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Retrotransposon%20Structural%20Diversity%20Uncovers%20Properties%20and%20Propensities%20in%20Angiosperm%20Genome%20Evolution&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vitte,%20Cl%C3%A9mentine&rft.date=2006-11-21&rft.volume=103&rft.issue=47&rft.spage=17638&rft.epage=17643&rft.pages=17638-17643&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0605618103&rft_dat=%3Cjstor_cross%3E30052515%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201359382&rft_id=info:pmid/17101966&rft_jstor_id=30052515&rfr_iscdi=true