Permanent Carbon Dioxide Storage in Deep-Sea Sediments

Stabilizing the concentration of atmospheric CO₂ may require storing enormous quantities of captured anthropogenic CO₂ in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO₂ stored in these reservoirs is buoyant. As a result, a portion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-08, Vol.103 (33), p.12291-12295
Hauptverfasser: House, Kurt Zenz, Schrag, Daniel P., Harvey, Charles F., Lackner, Klaus S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12295
container_issue 33
container_start_page 12291
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator House, Kurt Zenz
Schrag, Daniel P.
Harvey, Charles F.
Lackner, Klaus S.
description Stabilizing the concentration of atmospheric CO₂ may require storing enormous quantities of captured anthropogenic CO₂ in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO₂ stored in these reservoirs is buoyant. As a result, a portion of the injected CO₂ can escape if the reservoir is not appropriately sealed. We show that injecting CO₂ into deep-sea sediments >3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations. At the high pressures and low temperatures common in deep-sea sediments, CO₂ resides in its liquid phase and can be denser than the overlying pore fluid, causing the injected CO₂ to be gravitationally stable. Additionally, CO₂ hydrate formation will impede the flow of CO₂(l) and serve as a second cap on the system. The evolution of the CO₂ plume is described qualitatively from the injection to the formation of CO₂ hydrates and finally to the dilution of the CO₂(aq) solution by diffusion. If calcareous sediments are chosen, then the dissolution of carbonate host rock by the CO₂(aq) solution will slightly increase porosity, which may cause large increases in permeability. Karst formation, however, is unlikely because total dissolution is limited to only a few percent of the rock volume. The total CO₂ storage capacity within the 200-mile economic zone of the U.S. coastline is enormous, capable of storing thousands of years of current U.S. CO₂ emissions.
doi_str_mv 10.1073/pnas.0605318103
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_30050557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30050557</jstor_id><sourcerecordid>30050557</sourcerecordid><originalsourceid>FETCH-LOGICAL-a619t-9000865b2a2ac7786d15de8ae0320fbdd22a51c27da59606e95d0a9759eedfcf3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_AgFrtWz56UwYPgYdr3ksmvS0HWHxUKCqvnkJ28qbPMjzWZkfrfm2WXbuulp0Dyee8l-TL2CuEcQYuL7eDTOSiQAg2CeMIWCBZLVVl4yhYAXJem4tUpe57SBgCsNPCMnaIytkJdLZj6TrH3Aw1TsfRxPQ7Fx3a8bQMVq2mM_oaKNm8RbcsV-WJFoe2zTS_YSeO7RC8P6xn7-fnTj-VVef3ty9flh-vSK7RTafNIo-Sae-5rrY0KKAMZTyA4NOsQOPcSa66Dl1aBIisDeKulJQpN3Ygzdrnvu53XPYU6z46-c9vY9j7-daNv3cOTof3lbsY_DqXSRovc4N2hQRx_z5Qm17eppq7Lbx7n5JTRClX1OESbr8ylyfDtf3AzznHIv-A4IDdWVDajiz2q45hSpObuyghul5zbJeeOyeWKN_dfevSHqDIoDmBXeWwnnBAOObeYyftHiGvmrpvodsr29d5uUg76DgsACVJq8Q8DZ7Wq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201289349</pqid></control><display><type>article</type><title>Permanent Carbon Dioxide Storage in Deep-Sea Sediments</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>House, Kurt Zenz ; Schrag, Daniel P. ; Harvey, Charles F. ; Lackner, Klaus S.</creator><creatorcontrib>House, Kurt Zenz ; Schrag, Daniel P. ; Harvey, Charles F. ; Lackner, Klaus S.</creatorcontrib><description>Stabilizing the concentration of atmospheric CO₂ may require storing enormous quantities of captured anthropogenic CO₂ in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO₂ stored in these reservoirs is buoyant. As a result, a portion of the injected CO₂ can escape if the reservoir is not appropriately sealed. We show that injecting CO₂ into deep-sea sediments &gt;3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations. At the high pressures and low temperatures common in deep-sea sediments, CO₂ resides in its liquid phase and can be denser than the overlying pore fluid, causing the injected CO₂ to be gravitationally stable. Additionally, CO₂ hydrate formation will impede the flow of CO₂(l) and serve as a second cap on the system. The evolution of the CO₂ plume is described qualitatively from the injection to the formation of CO₂ hydrates and finally to the dilution of the CO₂(aq) solution by diffusion. If calcareous sediments are chosen, then the dissolution of carbonate host rock by the CO₂(aq) solution will slightly increase porosity, which may cause large increases in permeability. Karst formation, however, is unlikely because total dissolution is limited to only a few percent of the rock volume. The total CO₂ storage capacity within the 200-mile economic zone of the U.S. coastline is enormous, capable of storing thousands of years of current U.S. CO₂ emissions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0605318103</identifier><identifier>PMID: 16894174</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Atmosphere ; Buoyancy ; Carbon dioxide ; Carbon Dioxide - chemistry ; Carbon Dioxide - metabolism ; Dissolution ; Emissions ; Geologic Sediments - chemistry ; High pressure ; Hydrates ; Marine ; Ocean floor ; Oceans ; Physical Sciences ; Plumes ; Porosity ; Reservoirs ; Sea water ; Seawater - chemistry ; Sediments ; Studies ; Temperature ; United States</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-08, Vol.103 (33), p.12291-12295</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 15, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a619t-9000865b2a2ac7786d15de8ae0320fbdd22a51c27da59606e95d0a9759eedfcf3</citedby><cites>FETCH-LOGICAL-a619t-9000865b2a2ac7786d15de8ae0320fbdd22a51c27da59606e95d0a9759eedfcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30050557$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30050557$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16894174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>House, Kurt Zenz</creatorcontrib><creatorcontrib>Schrag, Daniel P.</creatorcontrib><creatorcontrib>Harvey, Charles F.</creatorcontrib><creatorcontrib>Lackner, Klaus S.</creatorcontrib><title>Permanent Carbon Dioxide Storage in Deep-Sea Sediments</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Stabilizing the concentration of atmospheric CO₂ may require storing enormous quantities of captured anthropogenic CO₂ in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO₂ stored in these reservoirs is buoyant. As a result, a portion of the injected CO₂ can escape if the reservoir is not appropriately sealed. We show that injecting CO₂ into deep-sea sediments &gt;3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations. At the high pressures and low temperatures common in deep-sea sediments, CO₂ resides in its liquid phase and can be denser than the overlying pore fluid, causing the injected CO₂ to be gravitationally stable. Additionally, CO₂ hydrate formation will impede the flow of CO₂(l) and serve as a second cap on the system. The evolution of the CO₂ plume is described qualitatively from the injection to the formation of CO₂ hydrates and finally to the dilution of the CO₂(aq) solution by diffusion. If calcareous sediments are chosen, then the dissolution of carbonate host rock by the CO₂(aq) solution will slightly increase porosity, which may cause large increases in permeability. Karst formation, however, is unlikely because total dissolution is limited to only a few percent of the rock volume. The total CO₂ storage capacity within the 200-mile economic zone of the U.S. coastline is enormous, capable of storing thousands of years of current U.S. CO₂ emissions.</description><subject>Animals</subject><subject>Atmosphere</subject><subject>Buoyancy</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon Dioxide - metabolism</subject><subject>Dissolution</subject><subject>Emissions</subject><subject>Geologic Sediments - chemistry</subject><subject>High pressure</subject><subject>Hydrates</subject><subject>Marine</subject><subject>Ocean floor</subject><subject>Oceans</subject><subject>Physical Sciences</subject><subject>Plumes</subject><subject>Porosity</subject><subject>Reservoirs</subject><subject>Sea water</subject><subject>Seawater - chemistry</subject><subject>Sediments</subject><subject>Studies</subject><subject>Temperature</subject><subject>United States</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_AgFrtWz56UwYPgYdr3ksmvS0HWHxUKCqvnkJ28qbPMjzWZkfrfm2WXbuulp0Dyee8l-TL2CuEcQYuL7eDTOSiQAg2CeMIWCBZLVVl4yhYAXJem4tUpe57SBgCsNPCMnaIytkJdLZj6TrH3Aw1TsfRxPQ7Fx3a8bQMVq2mM_oaKNm8RbcsV-WJFoe2zTS_YSeO7RC8P6xn7-fnTj-VVef3ty9flh-vSK7RTafNIo-Sae-5rrY0KKAMZTyA4NOsQOPcSa66Dl1aBIisDeKulJQpN3Ygzdrnvu53XPYU6z46-c9vY9j7-daNv3cOTof3lbsY_DqXSRovc4N2hQRx_z5Qm17eppq7Lbx7n5JTRClX1OESbr8ylyfDtf3AzznHIv-A4IDdWVDajiz2q45hSpObuyghul5zbJeeOyeWKN_dfevSHqDIoDmBXeWwnnBAOObeYyftHiGvmrpvodsr29d5uUg76DgsACVJq8Q8DZ7Wq</recordid><startdate>20060815</startdate><enddate>20060815</enddate><creator>House, Kurt Zenz</creator><creator>Schrag, Daniel P.</creator><creator>Harvey, Charles F.</creator><creator>Lackner, Klaus S.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060815</creationdate><title>Permanent Carbon Dioxide Storage in Deep-Sea Sediments</title><author>House, Kurt Zenz ; Schrag, Daniel P. ; Harvey, Charles F. ; Lackner, Klaus S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a619t-9000865b2a2ac7786d15de8ae0320fbdd22a51c27da59606e95d0a9759eedfcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Atmosphere</topic><topic>Buoyancy</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon Dioxide - metabolism</topic><topic>Dissolution</topic><topic>Emissions</topic><topic>Geologic Sediments - chemistry</topic><topic>High pressure</topic><topic>Hydrates</topic><topic>Marine</topic><topic>Ocean floor</topic><topic>Oceans</topic><topic>Physical Sciences</topic><topic>Plumes</topic><topic>Porosity</topic><topic>Reservoirs</topic><topic>Sea water</topic><topic>Seawater - chemistry</topic><topic>Sediments</topic><topic>Studies</topic><topic>Temperature</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>House, Kurt Zenz</creatorcontrib><creatorcontrib>Schrag, Daniel P.</creatorcontrib><creatorcontrib>Harvey, Charles F.</creatorcontrib><creatorcontrib>Lackner, Klaus S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>House, Kurt Zenz</au><au>Schrag, Daniel P.</au><au>Harvey, Charles F.</au><au>Lackner, Klaus S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permanent Carbon Dioxide Storage in Deep-Sea Sediments</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-08-15</date><risdate>2006</risdate><volume>103</volume><issue>33</issue><spage>12291</spage><epage>12295</epage><pages>12291-12295</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Stabilizing the concentration of atmospheric CO₂ may require storing enormous quantities of captured anthropogenic CO₂ in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO₂ stored in these reservoirs is buoyant. As a result, a portion of the injected CO₂ can escape if the reservoir is not appropriately sealed. We show that injecting CO₂ into deep-sea sediments &gt;3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations. At the high pressures and low temperatures common in deep-sea sediments, CO₂ resides in its liquid phase and can be denser than the overlying pore fluid, causing the injected CO₂ to be gravitationally stable. Additionally, CO₂ hydrate formation will impede the flow of CO₂(l) and serve as a second cap on the system. The evolution of the CO₂ plume is described qualitatively from the injection to the formation of CO₂ hydrates and finally to the dilution of the CO₂(aq) solution by diffusion. If calcareous sediments are chosen, then the dissolution of carbonate host rock by the CO₂(aq) solution will slightly increase porosity, which may cause large increases in permeability. Karst formation, however, is unlikely because total dissolution is limited to only a few percent of the rock volume. The total CO₂ storage capacity within the 200-mile economic zone of the U.S. coastline is enormous, capable of storing thousands of years of current U.S. CO₂ emissions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16894174</pmid><doi>10.1073/pnas.0605318103</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-08, Vol.103 (33), p.12291-12295
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_30050557
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Atmosphere
Buoyancy
Carbon dioxide
Carbon Dioxide - chemistry
Carbon Dioxide - metabolism
Dissolution
Emissions
Geologic Sediments - chemistry
High pressure
Hydrates
Marine
Ocean floor
Oceans
Physical Sciences
Plumes
Porosity
Reservoirs
Sea water
Seawater - chemistry
Sediments
Studies
Temperature
United States
title Permanent Carbon Dioxide Storage in Deep-Sea Sediments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permanent%20Carbon%20Dioxide%20Storage%20in%20Deep-Sea%20Sediments&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=House,%20Kurt%20Zenz&rft.date=2006-08-15&rft.volume=103&rft.issue=33&rft.spage=12291&rft.epage=12295&rft.pages=12291-12295&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0605318103&rft_dat=%3Cjstor_pubme%3E30050557%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201289349&rft_id=info:pmid/16894174&rft_jstor_id=30050557&rfr_iscdi=true